Continuous and Discrete Free Boundary Problems for Partial Differential Equations

偏微分方程的连续和离散自由边界问题

基本信息

  • 批准号:
    1800527
  • 负责人:
  • 金额:
    $ 15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-08-01 至 2022-07-31
  • 项目状态:
    已结题

项目摘要

Free boundary problems are problems for partial differential equations (PDEs) which are defined in a domain with a boundary that is not known beforehand (i.e. "free"). A further quantitative condition must be then provided at the free boundary to exclude indeterminacy. Problems of this sort arise in a large number of areas of applied and industrial interest. The paradigm example is the classical Stefan problem describing the melting and solidification of the ice: the free boundary here is the moving interface between the regions occupied by the water and the ice. Other important examples occur in filtration through porous media, where free boundaries occur as fronts between saturated and unsaturated regions, and others come from combustion (propagation of the flame front), mathematical finance (optimal time for exercising an option), biology (regions occupied by different species) and so on. Because of the abundance of applications in various sciences and real world problems, free boundary problems are considered today as one of the most important directions in the mainstream of the analysis of partial differential equations and offer opportunities of collaboration among mathematicians, physicists, engineers, material scientists, finance practitioners and other industrial researchers, biologists, and other scientists.This project consists of two main parts. The first part concerns problems that naturally exhibit free boundaries of codimension two, which are often called thin free boundaries. Such problems appear in many applications, such as elasticity, math finance, boundary phase transitions. They are also related to problems for nonlocal integro-differential operators such as the fractional Laplacian through extension operators. The second part concerns the fascinating limiting configurations in various growth/aggregation models such as the Abelian sandpile growth model, which can be viewed as a discrete version of Poincare's balayage problem in potential theory and is closely related to the classical obstacle problem. While there has been a significant progress in such problems in recent years, there are still many important questions that remain to be answered and the current project aims to contribute in that directions. Particular questions to be studied include various thin free boundary problems: for parabolic PDEs with variable coefficients, for almost minimizers (elliptic case), properly stated two- and multi-phase problems, as well as the systematic study of the limits of discrete-valued least superharmonic majorants (so-called discrete-valued Perron method). This may lead to better understanding of the formation of polygonal and piecewise-quadratic limits in Abelian sandpile and other growth/aggregation models and related PDEs.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
自由边界问题是在一个边界未知的区域内定义的偏微分方程(PDEs)问题。“自由”)。然后必须在自由边界处提供进一步的定量条件以排除不确定性。这类问题出现在许多应用领域和工业领域。典型的例子是描述冰的融化和凝固的经典的斯蒂芬问题:这里的自由边界是水和冰所占据的区域之间的移动界面。其他重要的例子发生在多孔介质的过滤中,其中自由边界出现在饱和和不饱和区域之间的前沿,其他例子来自燃烧(火焰前沿的传播),数学金融(执行选项的最佳时间),生物学(不同物种占据的区域)等等。由于在各种科学和现实世界问题中的大量应用,自由边界问题被认为是当今偏微分方程分析主流中最重要的方向之一,并为数学家,物理学家,工程师,材料科学家,金融从业者和其他工业研究人员,生物学家和其他科学家提供了合作的机会。这个项目包括两个主要部分。第一部分涉及自然表现出余维2的自由边界的问题,这通常被称为薄自由边界。这类问题出现在许多应用中,如弹性、数学、金融、边界相变。它们也涉及到非局部积分微分算子的问题,如分数阶拉普拉斯扩展算子。第二部分关注各种增长/聚集模型中令人着迷的极限构型,如阿贝尔沙堆增长模型,它可以看作是势理论中庞加莱平衡问题的离散版本,与经典障碍问题密切相关。虽然近年来在这些问题上取得了重大进展,但仍有许多重要问题有待回答,目前的项目旨在朝着这个方向作出贡献。要研究的具体问题包括各种薄自由边界问题:对于变系数抛物型偏微分方程,对于几乎极小值(椭圆情况),适当表述的两相和多相问题,以及对离散值最小超谐波主量的极限的系统研究(所谓的离散值Perron方法)。这可能有助于更好地理解阿贝尔沙堆和其他生长/聚集模型及相关偏微分方程中多边形和分段二次极限的形成。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The regular free boundary in the thin obstacle problem for degenerate parabolic equations
简并抛物方程薄障碍问题中的正则自由边界
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Banerjee, A.;Danielli, D.;Garofalo, N.;Petrosyan, A.
  • 通讯作者:
    Petrosyan, A.
Almost minimizers for certain fractional variational problems
某些分数变分问题的几乎最小化
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jeon, Seongmin;Petrosyan, Arshak
  • 通讯作者:
    Petrosyan, Arshak
The structure of the singular set in the thin obstacle problem for degenerate parabolic equations
简并抛物方程薄障碍问题中奇异集的结构
Almost minimizers for the thin obstacle problem
薄障碍问题的几乎最小化
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Arshak Petrosyan其他文献

A free boundary problem for $\infty$ –Laplace equation
The obstacle problem for a higher order fractional Laplacian

Arshak Petrosyan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Arshak Petrosyan', 18)}}的其他基金

Certain Problems with Lower Dimensional Free Boundaries
低维自由边界的某些问题
  • 批准号:
    1101139
  • 财政年份:
    2011
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Certain Free Boundary Problems
某些自由边界问题
  • 批准号:
    0701015
  • 财政年份:
    2007
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Certain Aspects of Free Boundary Problems
自由边界问题的某些方面
  • 批准号:
    0401179
  • 财政年份:
    2004
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant

相似海外基金

Discrete Geometry and Convexity
离散几何和凸性
  • 批准号:
    2349045
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
REU Site: Research Experiences for Undergraduates in Algebra and Discrete Mathematics at Auburn University
REU 网站:奥本大学代数和离散数学本科生的研究经验
  • 批准号:
    2349684
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Travel: NSF Student Travel Grant for 2024 ACM SIGSIM Principles of Advanced Discrete Simulation (PADS)
旅行:2024 年 ACM SIGSIM 高级离散仿真原理 (PADS) 的 NSF 学生旅行补助金
  • 批准号:
    2416160
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
CRII: FET: Quantum Advantages through Discrete Quantum Walks
CRII:FET:离散量子行走的量子优势
  • 批准号:
    2348399
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
NEWWAVE: New methods for analysing travelling waves in discrete systems with applications to neuroscience
NEWWAVE:分析离散系统中行波的新方法及其在神经科学中的应用
  • 批准号:
    EP/Y027531/1
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Fellowship
Polymer Nanocomposites using Discrete Nanoparticles and Bicontinuous Scaffolds: New Strategies for Connective Morphologies and Property Control
使用离散纳米粒子和双连续支架的聚合物纳米复合材料:连接形态和性能控制的新策略
  • 批准号:
    2407300
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Identifying user preferences to optimize HIV/Sexually Transmitted infections test among international migrants and tourists in Japan: A Discrete Choice Experiment
确定用户偏好以优化日本国际移民和游客的艾滋病毒/性传播感染测试:离散选择实验
  • 批准号:
    24K20238
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Identification, estimation, and inference of the discount factor in dynamic discrete choice models
动态离散选择模型中折扣因子的识别、估计和推断
  • 批准号:
    24K04814
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Symmetry Methods for Discrete Equations and Their Applications
离散方程的对称性方法及其应用
  • 批准号:
    24K06852
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Harnessing the Reactivity of Strained Macrocycles to Access Discrete Carbon Nanostructures
利用应变大环化合物的反应性来获得离散的碳纳米结构
  • 批准号:
    2400147
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了