New Application of Equivariant Index Theory
等变指数理论的新应用
基本信息
- 批准号:1800667
- 负责人:
- 金额:$ 16.08万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
At the scale of atomic physics, the classical laws of physics pioneered by Newton must be adjusted to the laws of quantum mechanics discovered by Heisenberg, Schrodinger, Dirac and others. This process is called quantization. Within quantum mechanics, as within classical mechanics, the laws describing the mechanical systems usually display a high degree of symmetry. This is a reflection of the nineteenth century discovery that symmetries correspond to the conserved quantities like energy and momentum. The symmetry related to the law of conservation of momentum expresses itself in the fact that the laws of physics are presumed to be the same everywhere in the universe. In this project the principal investigator will use noncommutative geometry tools such as equivariant index theory to study several interesting problems about quantization involving various symmetries. The principal investigator will pursue three research projects in geometry quantization and equivariant index theory: (1) applying index theory to geometric quantization of various generalization of symplectic manifolds such as Hamiltonian loop group spaces and log sympelctic manifolds (2) geometrically realizing an irreducible representation of a reductive Lie group as an equivariant analytic index on corresponding coadjoint orbit, and studying its restriction to its maximal compact subgroup (3) generalizing equivariant index theory to noncompact manifolds or groups, based on the KK-theory developed by Kasparov.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在原子物理学的尺度上,牛顿开创的经典物理定律必须与海森堡、薛定谔、狄拉克和其他人发现的量子力学定律相适应。这个过程称为量化。在量子力学中,就像在经典力学中一样,描述力学系统的定律通常表现出高度的对称性。这反映了世纪发现对称性对应于能量和动量等守恒量。与动量守恒定律有关的对称性表现在这样一个事实上,即物理定律被假定在宇宙中的任何地方都是相同的。在这个项目中,主要研究者将使用非交换几何工具,如等变指数理论,研究涉及各种对称性的量子化的几个有趣的问题。首席研究员将从事几何量化和等变指数理论的三个研究项目:(1)将指标理论应用于辛流形的各种推广如Hamilton圈群空间和对数辛流形的几何量子化(2)在几何上实现约化李群的不可约表示作为相应余伴随轨道上的等变解析指标,并研究其限制其最大紧子群(3)推广等变指数理论的非紧流形或群体,基于KK理论开发的卡斯帕罗夫。这个奖项反映了NSF的法定使命,并已被认为是值得支持的评估使用基金会的智力价值和更广泛的影响审查标准。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A KK-theoretic perspective on deformed Dirac operators
变形狄拉克算子的 KK 理论视角
- DOI:10.1016/j.aim.2021.107604
- 发表时间:2021
- 期刊:
- 影响因子:1.7
- 作者:Loizides, Yiannis;Rodsphon, Rudy;Song, Yanli
- 通讯作者:Song, Yanli
A geometric realisation of tempered representations restricted to maximal compact subgroups
限制于最大紧子群的调节表示的几何实现
- DOI:10.1007/s00208-020-02006-4
- 发表时间:2020
- 期刊:
- 影响因子:1.4
- 作者:Hochs, Peter;Song, Yanli;Yu, Shilin
- 通讯作者:Yu, Shilin
Spinor modules for Hamiltonian loop group spaces
哈密顿环群空间的旋量模
- DOI:10.4310/jsg.2020.v18.n3.a10
- 发表时间:2020
- 期刊:
- 影响因子:0.7
- 作者:Loizides, Yiannis;Meinrenken, Eckhard;Song, Yanli
- 通讯作者:Song, Yanli
Norm-square localization and the quantization of Hamiltonian loop group spaces
哈密顿循环群空间的范数平方局部化和量化
- DOI:10.1016/j.jfa.2019.108445
- 发表时间:2020
- 期刊:
- 影响因子:1.7
- 作者:Loizides, Yiannis;Song, Yanli
- 通讯作者:Song, Yanli
A geometric formula for multiplicities of 𝐾-types of tempered representations
- DOI:10.1090/tran/7857
- 发表时间:2018-05
- 期刊:
- 影响因子:1.3
- 作者:P. Hochs;Yanli Song;Shilin Yu
- 通讯作者:P. Hochs;Yanli Song;Shilin Yu
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yanli Song其他文献
Economic analysis on the integration of oil-based parabolic trough solar collector and the steam turbine regenerative system
油基抛物面槽式太阳能集热器与汽轮机回热系统一体化经济分析
- DOI:
10.1109/icpre.2016.7871164 - 发表时间:
2016-10 - 期刊:
- 影响因子:0
- 作者:
Yisong Wang;Tao Du;Liying Liu;Shuai Che;Yanli Song;Xin Fang - 通讯作者:
Xin Fang
An equivariant index for proper actions II: properties and applications
适当行动的等变指数 II:属性和应用
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
P. Hochs;Yanli Song - 通讯作者:
Yanli Song
Water- and reduction-free preparation of oxygen vacancy rich Cu-ZnO-ZrOsub2/sub catalysts for promoted methanol synthesis from COsub2/sub
- DOI:
10.1016/j.fuel.2022.124264 - 发表时间:
2022-08-15 - 期刊:
- 影响因子:7.500
- 作者:
Ziqi Li;Tao Du;Yingnan Li;He Jia;Yisong Wang;Yanli Song;Xin Fang - 通讯作者:
Xin Fang
A study on the pollutant control effect of a new push-pull exhaust hood under different pollutant velocities
不同污染物流速下新型推拉式通风柜污染物控制效果的研究
- DOI:
10.1016/j.jobe.2022.104570 - 发表时间:
2022-08-01 - 期刊:
- 影响因子:7.400
- 作者:
Yanli Song;Xusheng Yang;Zhao Zhang;Kexin Bao;Tao Du;Haifeng Guo - 通讯作者:
Haifeng Guo
Effect of dichloromethane on the performance and yield rate of pure green petroleum coke products
二氯甲烷对纯绿色石油焦产品性能和收率的影响
- DOI:
10.1016/j.matlet.2021.131387 - 发表时间:
2021-11 - 期刊:
- 影响因子:3
- 作者:
Ping Liu;Chuanjun Tu;Pei Gong;Jiao Tan;Yanli Song;Peng Yan;Xin Shen - 通讯作者:
Xin Shen
Yanli Song的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yanli Song', 18)}}的其他基金
FRG: Collaborative Research: The Hypoelliptic Laplacian, Noncommutative Geometry, and Applications to Representations and Singular Spaces
FRG:合作研究:亚椭圆拉普拉斯、非交换几何以及在表示和奇异空间中的应用
- 批准号:
1952557 - 财政年份:2020
- 资助金额:
$ 16.08万 - 项目类别:
Standard Grant
Noncommutative Geometry Conference 2019
2019 年非交换几何会议
- 批准号:
1856688 - 财政年份:2019
- 资助金额:
$ 16.08万 - 项目类别:
Standard Grant
相似国自然基金
Graphon mean field games with partial observation and application to failure detection in distributed systems
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Renewal application: How do ecological trade-offs drive ectomycorrhizal fungal community assembly? Fine- scale processes with large-scale implications
更新应用:生态权衡如何驱动外生菌根真菌群落组装?
- 批准号:
MR/Y011503/1 - 财政年份:2025
- 资助金额:
$ 16.08万 - 项目类别:
Fellowship
RII Track-4: NSF: Developing 3D Models of Live-Endothelial Cell Dynamics with Application Appropriate Validation
RII Track-4:NSF:开发活内皮细胞动力学的 3D 模型并进行适当的应用验证
- 批准号:
2327466 - 财政年份:2024
- 资助金额:
$ 16.08万 - 项目类别:
Standard Grant
Conference: PDE in Moab: Advances in Theory and Application
会议:摩押偏微分方程:理论与应用的进展
- 批准号:
2350128 - 财政年份:2024
- 资助金额:
$ 16.08万 - 项目类别:
Standard Grant
Collaborative Research: Uncovering the adaptive origins of fossil apes through the application of a transdisciplinary approach
合作研究:通过应用跨学科方法揭示类人猿化石的适应性起源
- 批准号:
2316612 - 财政年份:2024
- 资助金额:
$ 16.08万 - 项目类别:
Standard Grant
Collaborative Research: Uncovering the adaptive origins of fossil apes through the application of a transdisciplinary approach
合作研究:通过应用跨学科方法揭示类人猿化石的适应性起源
- 批准号:
2316615 - 财政年份:2024
- 资助金额:
$ 16.08万 - 项目类别:
Standard Grant
GOALI: Understanding granulation using microbial resource management for the broader application of granular technology
目标:利用微生物资源管理了解颗粒化,以实现颗粒技术的更广泛应用
- 批准号:
2227366 - 财政年份:2024
- 资助金额:
$ 16.08万 - 项目类别:
Standard Grant
IgA and IgM superiority over IgG in neutralizing SARS-CoV-2: Clarifying the mechanisms and application
IgA 和 IgM 在中和 SARS-CoV-2 方面优于 IgG:阐明机制和应用
- 批准号:
24K18274 - 财政年份:2024
- 资助金额:
$ 16.08万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Sustainable solution for cooling application
冷却应用的可持续解决方案
- 批准号:
10089491 - 财政年份:2024
- 资助金额:
$ 16.08万 - 项目类别:
Collaborative R&D
Measurement, analysis and application of advanced lubricant materials
先进润滑材料的测量、分析与应用
- 批准号:
10089539 - 财政年份:2024
- 资助金额:
$ 16.08万 - 项目类别:
Collaborative R&D
Application of artificial intelligence to predict biologic systemic therapy clinical response, effectiveness and adverse events in psoriasis
应用人工智能预测生物系统治疗银屑病的临床反应、有效性和不良事件
- 批准号:
MR/Y009657/1 - 财政年份:2024
- 资助金额:
$ 16.08万 - 项目类别:
Fellowship