FRG: Collaborative Research: The Hypoelliptic Laplacian, Noncommutative Geometry, and Applications to Representations and Singular Spaces
FRG:合作研究:亚椭圆拉普拉斯、非交换几何以及在表示和奇异空间中的应用
基本信息
- 批准号:1952557
- 负责人:
- 金额:$ 15.39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-06-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The collection of frequencies at which a geometric structure resonates is called spectrum of that structure. Encoded in the spectrum is a great deal of information about geometric form, which is difficult to extract. One might ask: How does the sound of a bell determines its shape, or vice versa? A new approach to the problem of relating geometry to the spectrum, based on a concept called the hypoelliptic Laplacian, has shown great promise. The purpose of this project is to build a new theoretical foundation for the hypoelliptic Laplacian, and then develop its applications in harmonic analysis and elsewhere. Expected outcomes will include a clearer and deeper overall understanding of the the hypoelliptic Laplacian, and a broadening of the range of applications to which it may be applied. There will be significant training and mentoring opportunities for graduate students and postdoctoral fellows in geometric and harmonic analysis, distributed across the three sites involved in the project. In more detail, this project will create a foundational theory for Jean-Michel Bismut's hypoelliptic Laplacian as it arises in symmetric and locally symmetric spaces, and elsewhere. For this purpose the investigators will use techniques previously developed in noncommutative geometry, especially the pseudodifferential operator theory originally developed to tackle the local index problem in noncommutative geometry. Turning to applications, in principle the hypoelliptic Laplacian offers a new approach to Harish-Chandra's Plancherel formula for real reductive groups, and an early priority will be to explore this application further. The newly established Mackey bijection in the representation theory of reductive groups (discovered in noncommutative geometry) will be investigated simultaneously. Many other potential applications in noncommutative geometry present themselves, and these will be studied carefully during the course of the project.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
几何结构共振的频率集合称为该结构的频谱。 光谱中编码了大量的几何形状信息,这些信息很难提取。 有人可能会问:钟的声音如何决定它的形状,反之亦然? 一种新的方法来解决问题的几何关系的频谱,基于一个概念,称为亚椭圆拉普拉斯算子,已显示出很大的希望。本计画的目的是为次椭圆拉普拉斯建立一个新的理论基础,进而发展其在调和分析及其他领域的应用。 预期成果将包括对亚椭圆拉普拉斯算子有更清晰和更深入的全面了解,并扩大其可能适用的应用范围。 将有显着的培训和指导机会,研究生和博士后研究员在几何和谐波分析,分布在三个网站参与该项目。更详细地说,这个项目将为Jean-Michel Bismut的次椭圆拉普拉斯算子创建一个基础理论,因为它出现在对称和局部对称空间以及其他地方。为此,研究人员将使用以前在非交换几何中开发的技术,特别是最初开发用于解决非交换几何中局部指数问题的伪微分算子理论。转向应用,在原则上的亚椭圆拉普拉斯算子提供了一个新的方法,哈里什-钱德拉的Plancherel公式的真实的还原群,早期的优先事项将是进一步探讨这一应用。 新建立的麦基双射在约化群的表示理论(发现在非交换几何)将同时进行研究。在非对易几何中还有许多其他潜在的应用,这些将在项目过程中进行仔细研究。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yanli Song其他文献
Economic analysis on the integration of oil-based parabolic trough solar collector and the steam turbine regenerative system
油基抛物面槽式太阳能集热器与汽轮机回热系统一体化经济分析
- DOI:
10.1109/icpre.2016.7871164 - 发表时间:
2016-10 - 期刊:
- 影响因子:0
- 作者:
Yisong Wang;Tao Du;Liying Liu;Shuai Che;Yanli Song;Xin Fang - 通讯作者:
Xin Fang
An equivariant index for proper actions II: properties and applications
适当行动的等变指数 II:属性和应用
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
P. Hochs;Yanli Song - 通讯作者:
Yanli Song
Water- and reduction-free preparation of oxygen vacancy rich Cu-ZnO-ZrOsub2/sub catalysts for promoted methanol synthesis from COsub2/sub
- DOI:
10.1016/j.fuel.2022.124264 - 发表时间:
2022-08-15 - 期刊:
- 影响因子:7.500
- 作者:
Ziqi Li;Tao Du;Yingnan Li;He Jia;Yisong Wang;Yanli Song;Xin Fang - 通讯作者:
Xin Fang
A study on the pollutant control effect of a new push-pull exhaust hood under different pollutant velocities
不同污染物流速下新型推拉式通风柜污染物控制效果的研究
- DOI:
10.1016/j.jobe.2022.104570 - 发表时间:
2022-08-01 - 期刊:
- 影响因子:7.400
- 作者:
Yanli Song;Xusheng Yang;Zhao Zhang;Kexin Bao;Tao Du;Haifeng Guo - 通讯作者:
Haifeng Guo
Effect of dichloromethane on the performance and yield rate of pure green petroleum coke products
二氯甲烷对纯绿色石油焦产品性能和收率的影响
- DOI:
10.1016/j.matlet.2021.131387 - 发表时间:
2021-11 - 期刊:
- 影响因子:3
- 作者:
Ping Liu;Chuanjun Tu;Pei Gong;Jiao Tan;Yanli Song;Peng Yan;Xin Shen - 通讯作者:
Xin Shen
Yanli Song的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yanli Song', 18)}}的其他基金
Noncommutative Geometry Conference 2019
2019 年非交换几何会议
- 批准号:
1856688 - 财政年份:2019
- 资助金额:
$ 15.39万 - 项目类别:
Standard Grant
New Application of Equivariant Index Theory
等变指数理论的新应用
- 批准号:
1800667 - 财政年份:2018
- 资助金额:
$ 15.39万 - 项目类别:
Standard Grant
相似海外基金
FRG: Collaborative Research: New birational invariants
FRG:协作研究:新的双有理不变量
- 批准号:
2244978 - 财政年份:2023
- 资助金额:
$ 15.39万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2245017 - 财政年份:2023
- 资助金额:
$ 15.39万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245111 - 财政年份:2023
- 资助金额:
$ 15.39万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245077 - 财政年份:2023
- 资助金额:
$ 15.39万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2244879 - 财政年份:2023
- 资助金额:
$ 15.39万 - 项目类别:
Standard Grant
FRG: Collaborative Research: New Birational Invariants
FRG:合作研究:新的双理性不变量
- 批准号:
2245171 - 财政年份:2023
- 资助金额:
$ 15.39万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2403764 - 财政年份:2023
- 资助金额:
$ 15.39万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2245021 - 财政年份:2023
- 资助金额:
$ 15.39万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245097 - 财政年份:2023
- 资助金额:
$ 15.39万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245147 - 财政年份:2023
- 资助金额:
$ 15.39万 - 项目类别:
Continuing Grant