RUI: Geometric Intersection Graphs

RUI:几何交集图

基本信息

  • 批准号:
    1800734
  • 负责人:
  • 金额:
    $ 10万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-07-15 至 2023-06-30
  • 项目状态:
    已结题

项目摘要

This project envisions two main objectives: First, it studies the theory of geometric representations of graphs, building on a broad array of mathematical methods, and integrating the results into new technology. Second, it trains the next generation of students for careers in mathematics, sciences, and engineering, focusing on solid foundations in discrete mathematics, and developing mathematical skills for handling geometric objects efficiently. Visualizing complex systems and large data sets has become routine, including user-friendly handling of virtual objects in low dimensions. Designing efficient computer tools in this context is a challenging task, it calls for a thorough understanding of how geometric objects and relations between them are represented, as well as highly qualified developers and scientists who are familiar with the capabilities and limitations of these mathematical tools.Representing graphs in space is constrained by topological, metric, and algebraic properties. Topological constraints are typically captured by unavoidable patterns in the intersection graph of curves or surfaces, and is closely related to Ramsey-type results in combinatorial geometry. Metric constraints correspond to patterns in distances, slopes, angles, and areas that can be realized simultaneously. Algebraic constraints play an important role when edges are represented by algebraic curves (including straight lines). This project will study the intersection patterns of geometric objects, where the intersection relation is represented by an undirected graph, and it will also examine the intersections created by embeddings of geometric graphs, topological graphs, hypergraphs, or simplicial complexes into Euclidean spaces of low dimensions. Related enumerative problems will be considered, as well, where metric and topological constraints combined with classical combinatorial problems yield new challenges. Quantitative bounds for the realization spaces of basic geometric objects (such as points, line segments, lines, and quadrics) have applications in cartography, computer science, optimization, and solid modelling.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目设想了两个主要目标:首先,它研究图形的几何表示理论,建立在广泛的数学方法基础上,并将结果整合到新技术中。其次,它培养下一代学生在数学,科学和工程的职业生涯,专注于离散数学的坚实基础,并发展数学技能,有效地处理几何对象。复杂系统和大型数据集的可视化已成为常规,包括低维虚拟对象的用户友好处理。在这种情况下,设计有效的计算机工具是一项具有挑战性的任务,它需要对几何对象及其之间的关系如何表示的透彻理解,以及熟悉这些数学工具的能力和局限性的高素质开发人员和科学家。拓扑约束通常由曲线或曲面的交图中不可避免的模式捕获,并且与组合几何中的Ramsey型结果密切相关。度量约束对应于可以同时实现的距离、斜率、角度和面积的模式。当边用代数曲线(包括直线)表示时,代数约束起着重要的作用。这个项目将研究几何对象的相交模式,其中相交关系由无向图表示,它还将研究几何图,拓扑图,超图或单纯复形嵌入到低维欧氏空间中所产生的相交。相关的枚举问题将被考虑,以及度量和拓扑约束与经典的组合问题相结合,产生新的挑战。基本几何对象(如点、线段、直线和二次曲面)的实现空间的定量界限在制图学、计算机科学、优化和实体建模中有应用。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(16)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Online Spanners in Metric Spaces
  • DOI:
    10.4230/lipics.esa.2022.18
  • 发表时间:
    2022-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Bhore;Arnold Filtser;Hadi Khodabandeh;Csaba D. T'oth
  • 通讯作者:
    S. Bhore;Arnold Filtser;Hadi Khodabandeh;Csaba D. T'oth
Maximal Distortion of Geodesic Diameters in Polygonal Domains
多边形域中测地线直径的最大变形
Hop spanners for geometric intersection graphs
用于几何交叉图的跳扳手
Aspect Ratio Universal Rectangular Layouts
长宽比通用矩形布局
Crossing minimization in perturbed drawings
扰动绘图中的交叉最小化
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Csaba Toth其他文献

J-Pop and performances of young female identity
J-Pop 与年轻女性身份的表演
  • DOI:
    10.1177/110330880801600201
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Csaba Toth
  • 通讯作者:
    Csaba Toth

Csaba Toth的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Csaba Toth', 18)}}的其他基金

RUI: Optimization on Geometric Spanner Networks from a Combinatorial Perspective
RUI:从组合角度优化几何扳手网络
  • 批准号:
    2154347
  • 财政年份:
    2022
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
AF: Small: Collaborative Research: Reconfiguration Algorithms
AF:小型:协作研究:重构算法
  • 批准号:
    1423615
  • 财政年份:
    2014
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant

相似国自然基金

Lagrangian origin of geometric approaches to scattering amplitudes
  • 批准号:
    24ZR1450600
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Conference: Southern California Geometric Analysis Seminar
会议:南加州几何分析研讨会
  • 批准号:
    2406732
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Conference: Geometric Measure Theory, Harmonic Analysis, and Partial Differential Equations: Recent Advances
会议:几何测度理论、调和分析和偏微分方程:最新进展
  • 批准号:
    2402028
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
CAREER: Optimal Transport Beyond Probability Measures for Robust Geometric Representation Learning
职业生涯:超越概率测量的最佳传输以实现稳健的几何表示学习
  • 批准号:
    2339898
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Continuing Grant
OAC Core: OAC Core Projects: GPU Geometric Data Processing
OAC 核心:OAC 核心项目:GPU 几何数据处理
  • 批准号:
    2403239
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Conference: Geometric and Asymptotic Group Theory with Applications 2024
会议:几何和渐近群理论及其应用 2024
  • 批准号:
    2403833
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Conference: Young Geometric Group Theory XII
会议:年轻几何群理论XII
  • 批准号:
    2404322
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
CAREER: Isoperimetric and Minkowski Problems in Convex Geometric Analysis
职业:凸几何分析中的等周和闵可夫斯基问题
  • 批准号:
    2337630
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Continuing Grant
Geometric evolution of spaces with symmetries
具有对称性的空间的几何演化
  • 批准号:
    DP240101772
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Discovery Projects
Conference: Riverside Workshop on Geometric Group Theory 2024
会议:2024 年河滨几何群论研讨会
  • 批准号:
    2342119
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Conference: Frontiers of Geometric Analysis
会议:几何分析前沿
  • 批准号:
    2347894
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了