Derivation of the Kinetic Wave Equation

运动波方程的推导

基本信息

  • 批准号:
    1800840
  • 负责人:
  • 金额:
    $ 27万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-06-01 至 2021-05-31
  • 项目状态:
    已结题

项目摘要

Turbulence is a universal phenomenon, occurring in a number of physical systems. The simplest one is the flow of a fluid, say water in a river. In some regimes, the flow is very smooth, but in other situations it appears very chaotic, with eddies at various scales, interacting in a very complicated manner: the flow is then said to be turbulent. While turbulent flows are very hard to understand, and constitute to this day a scientific riddle, an approach was suggested by Kolmogorov in 1941. Kolmogorov's approach is instead of trying to fully describe the flow focus on statistical quantities that can be measured in the flow. In other words, instead of understanding everyting about the flow, which might not be possible, certain averaged quantities should follow precise physical laws. While this approach was very successful in many respects, it remains mysterious in many others. In particular, at a very fundamental level, no rigorous justification of the laws of turbulence is known: these laws seem to be valid experimentally, but how they exactly arise from first principles is not known. The aim of the program is to investigate this very fundamental question, which is related to very practical concerns. While turbulence in fluid flows is the first example that comes to mind, another type of turbulence, known as weak turbulence, might be more tractable, and provide the right entry point. Weak turbulence describes turbulence as it arises in nonlinear wave equations (of which there are many instances, from waves propagating on the surface of the ocean to electromagnetic waves or quantum physics). It was conjectured by several scientists, in particular Zakharov in the 70's and 80's, that weak turbulence is described by a specific equation, known as the kinetic wave equation. The central aim of the PI is to investigate this conjecture with the help of mathematical tools: in particular, the theory of partial differential equations, in connection with probability theory. This effort will hopefully enable us to validate Zakharov's claim under appropriate conditions, which would then open the way to a theoretical and rigorous understanding of weak turbulence.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
湍流是一种普遍现象,发生在许多物理系统中。最简单的是流体的流动,例如河流中的水。在某些情况下,流动非常平滑,但在其他情况下,它显得非常混乱,具有不同规模的涡流,以非常复杂的方式相互作用:因此流动被称为湍流。虽然湍流很难理解,并且至今仍然是一个科学谜题,但柯尔莫哥洛夫在 1941 年提出了一种方法。柯尔莫哥洛夫的方法不是试图完全描述流动,而是专注于可以在流动中测量的统计量。 换句话说,某些平均量应该遵循精确的物理定律,而不是理解有关流动的一切(这可能是不可能的)。虽然这种方法在许多方面都非常成功,但在其他许多方面仍然很神秘。特别是,在非常基本的层面上,我们不知道湍流定律的严格合理性:这些定律在实验上似乎是有效的,但它们到底是如何从第一原理中产生的尚不清楚。该计划的目的是调查这个非常基本的问题,它与非常实际的问题有关。虽然流体流动中的湍流是我想到的第一个例子,但另一种类型的湍流(称为弱湍流)可能更容易处理,并提供正确的进入点。弱湍流描述了非线性波动方程中出现的湍流(其中有很多例子,从海洋表面传播的波到电磁波或量子物理学)。一些科学家,特别是七十年代和八十年代的扎哈罗夫推测,弱湍流是由一个特定的方程来描述的,称为动力学波动方程。 PI 的中心目标是借助数学工具(特别是与概率论相关的偏微分方程理论)来研究这一猜想。这项工作有望使我们能够在适当的条件下验证扎哈罗夫的主张,从而为对弱湍流进行理论和严格的理解开辟道路。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Pierre Germain其他文献

A study on the regulation of cephamycin C and expandase biosynthesis by Streptomyces clavuligerus in continuous and batch culture
  • DOI:
    10.1007/bf00250495
  • 发表时间:
    1988-03-01
  • 期刊:
  • 影响因子:
    4.300
  • 作者:
    Ahmed Lebrihi;Gerard Lefebvre;Pierre Germain
  • 通讯作者:
    Pierre Germain
L2 to Lp bounds for spectral projectors on the Euclidean two-dimensional torus
欧几里得二维环面上光谱投影仪的 L2 到 Lp 界限
Hexahydroindanone derivatives of steroids formed by Rhodococcus equi
Equations de Navier–Stokes dans R2 : existence et comportement asymptotique de solutions d'énergie infinie
R2 中的纳维-斯托克斯方程:能量无穷大解的渐近存在与行为
  • DOI:
    10.1016/j.bulsci.2005.06.004
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Pierre Germain
  • 通讯作者:
    Pierre Germain
Finite Energy Scattering for the Lorentz–Maxwell Equation
  • DOI:
    10.1007/s00023-008-0378-4
  • 发表时间:
    2008-07-09
  • 期刊:
  • 影响因子:
    1.300
  • 作者:
    Pierre Germain
  • 通讯作者:
    Pierre Germain

Pierre Germain的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Pierre Germain', 18)}}的其他基金

Wave Turbulence and Stability of Solitary Waves
波湍流和孤立波的稳定性
  • 批准号:
    2155050
  • 财政年份:
    2022
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Weak Turbulence
弱湍流
  • 批准号:
    1501019
  • 财政年份:
    2015
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant
Space-Time Resonances and Asymptotics; Stability of Self-Similar Solutions
时空共振和渐近;
  • 批准号:
    1101269
  • 财政年份:
    2011
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant

相似国自然基金

关于Kinetic Cucker-Smale模型及相关耦合模型的适定性研究
  • 批准号:
    12001530
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
带奇性的 Kinetic Cucker-Smale 模型在随机环境中的平均场极限及时间渐近行为研究
  • 批准号:
    11801194
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
Kinetic Monte Carlo 模拟薄膜生长机理的研究
  • 批准号:
    10574059
  • 批准年份:
    2005
  • 资助金额:
    12.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: On New Directions for the Derivation of Wave Kinetic Equations
合作研究:波动力学方程推导的新方向
  • 批准号:
    2306378
  • 财政年份:
    2024
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Collaborative Research: On New Directions for the Derivation of Wave Kinetic Equations
合作研究:波动力学方程推导的新方向
  • 批准号:
    2306379
  • 财政年份:
    2024
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Collaborative Research: WoU-MMA: Coherent radio and x-ray precursor transients to gravitational wave events: Simulations in general relativity and kinetic theory
合作研究:WoU-MMA:引力波事件的相干射电和 X 射线前兆瞬变:广义相对论和动力学理论的模拟
  • 批准号:
    2307395
  • 财政年份:
    2023
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Collaborative Research: WoU-MMA: Coherent radio and x-ray precursor transients to gravitational wave events: Simulations in general relativity and kinetic theory
合作研究:WoU-MMA:引力波事件的相干射电和 X 射线前兆瞬变:广义相对论和动力学理论的模拟
  • 批准号:
    2307394
  • 财政年份:
    2023
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Study of terahertz-wave kinetic inductance detectors with superconducting metamaterials
超导超材料太赫兹波动感电感探测器研究
  • 批准号:
    22K18991
  • 财政年份:
    2022
  • 资助金额:
    $ 27万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Questions in Wave Turbulence and Quantum Kinetic Theories
波湍流和量子动力学理论中的问题
  • 批准号:
    2305523
  • 财政年份:
    2022
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Energy Transfer Processes in the Solar Wind: Kinetic scale instabilities and wave-particle interactions in small scale turbulence
太阳风中的能量转移过程:小尺度湍流中的动力学尺度不稳定性和波粒相互作用
  • 批准号:
    2390202
  • 财政年份:
    2020
  • 资助金额:
    $ 27万
  • 项目类别:
    Studentship
Questions in Wave Turbulence and Quantum Kinetic Theories
波湍流和量子动力学理论中的问题
  • 批准号:
    1854453
  • 财政年份:
    2018
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Questions in Wave Turbulence and Quantum Kinetic Theories
波湍流和量子动力学理论中的问题
  • 批准号:
    1814149
  • 财政年份:
    2018
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
New Tools in the Study of Wave Propagation: Dynamical Systems for Kinetic Equations, Inviscid Limits for Modulated Periodic Waves, and Rigorous Numerical Stability Analysis
波传播研究的新工具:运动方程的动力系统、调制周期波的无粘极限以及严格的数值稳定性分析
  • 批准号:
    1700279
  • 财政年份:
    2017
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了