Wave Turbulence and Stability of Solitary Waves
波湍流和孤立波的稳定性
基本信息
- 批准号:2155050
- 负责人:
- 金额:$ 31.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Fundamental models for a number of physical systems can be described in mathematical terms as "nonlinear dispersive equations". This is, for instance, the case for the equations of General Relativity, Plasma Physics, Atmosphere and Ocean Science, Nonlinear optics. While these systems are very different in many respects, the common mathematical features are responsible for similar behaviors. The phenomena that the project will investigate are, on the one hand, solitary waves, and on the other hand, wave turbulence. In the case of waves on a surface of water, think of tsunami for the former (a rigid behavior), and disordered ripples for the latter (a chaotic behavior). The aim of this project is to investigate these phenomena, which have many applications to basic science and technology. The project will also provide research training opportunities for graduate students.The project will reach a deeper understanding of two basic features of nonlinear dispersive equations: solitary waves and wave turbulence. For the former, the distorted Fourier transform will be used to analyze the stability of solitary waves, in particular their nonlinear resonances (in the sense of dynamical systems), leading to possibly optimal stability results. For the latter, the progress will be twofold: on the derivation of the kinetic description of wave turbulence, and on the analysis of the kinetic equation describing wave turbulence.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
许多物理系统的基本模型可以用数学术语描述为“非线性色散方程”。例如,广义相对论、等离子体物理学、大气和海洋科学、非线性光学的方程就是这种情况。虽然这些系统在许多方面都有很大的不同,但共同的数学特征导致了相似的行为。该项目将调查的现象一方面是孤立波,另一方面是波浪湍流。在水面上的波浪的情况下,对于前者,可以想到海啸(刚性行为),对于后者,可以想到无序的涟漪(混沌行为)。该项目的目的是研究这些在基础科学和技术中有许多应用的现象。该项目还将为研究生提供研究培训机会。该项目将更深入地了解非线性色散方程的两个基本特征:孤立波和波湍流。对于前者,扭曲傅立叶变换将被用来分析孤立波的稳定性,特别是它们的非线性共振(在动力系统的意义上),导致可能的最佳稳定性结果。对于后者,进展将是双重的:在推导波湍流的动力学描述上,以及在描述波湍流的动力学方程的分析上。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Pierre Germain其他文献
A study on the regulation of cephamycin C and expandase biosynthesis by Streptomyces clavuligerus in continuous and batch culture
- DOI:
10.1007/bf00250495 - 发表时间:
1988-03-01 - 期刊:
- 影响因子:4.300
- 作者:
Ahmed Lebrihi;Gerard Lefebvre;Pierre Germain - 通讯作者:
Pierre Germain
L2 to Lp bounds for spectral projectors on the Euclidean two-dimensional torus
欧几里得二维环面上光谱投影仪的 L2 到 Lp 界限
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0.7
- 作者:
C. Demeter;Pierre Germain - 通讯作者:
Pierre Germain
Hexahydroindanone derivatives of steroids formed by Rhodococcus equi
- DOI:
10.1007/bf00170182 - 发表时间:
1992-01-01 - 期刊:
- 影响因子:4.300
- 作者:
Andre Miclo;Pierre Germain - 通讯作者:
Pierre Germain
Equations de Navier–Stokes dans R2 : existence et comportement asymptotique de solutions d'énergie infinie
R2 中的纳维-斯托克斯方程:能量无穷大解的渐近存在与行为
- DOI:
10.1016/j.bulsci.2005.06.004 - 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
Pierre Germain - 通讯作者:
Pierre Germain
Finite Energy Scattering for the Lorentz–Maxwell Equation
- DOI:
10.1007/s00023-008-0378-4 - 发表时间:
2008-07-09 - 期刊:
- 影响因子:1.300
- 作者:
Pierre Germain - 通讯作者:
Pierre Germain
Pierre Germain的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Pierre Germain', 18)}}的其他基金
Derivation of the Kinetic Wave Equation
运动波方程的推导
- 批准号:
1800840 - 财政年份:2018
- 资助金额:
$ 31.94万 - 项目类别:
Continuing Grant
Space-Time Resonances and Asymptotics; Stability of Self-Similar Solutions
时空共振和渐近;
- 批准号:
1101269 - 财政年份:2011
- 资助金额:
$ 31.94万 - 项目类别:
Continuing Grant
相似海外基金
Turbulence, Shocks, and Stability in Fluids and Plasmas
流体和等离子体中的湍流、冲击和稳定性
- 批准号:
2307357 - 财政年份:2023
- 资助金额:
$ 31.94万 - 项目类别:
Continuing Grant
Generation mechanism of turbulence coherent structure by three-dimensional flow stability analysis applying nonlinear model
应用非线性模型进行三维流动稳定性分析的湍流相干结构生成机制
- 批准号:
19KK0373 - 财政年份:2022
- 资助金额:
$ 31.94万 - 项目类别:
Fund for the Promotion of Joint International Research (Fostering Joint International Research (A))
Turbulence multi-scale interaction based on global stability of unsteady / nonequillibrium flow
基于非定常/非平衡流全局稳定性的湍流多尺度相互作用
- 批准号:
19K14880 - 财政年份:2019
- 资助金额:
$ 31.94万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Regularity, Stability, and Turbulence in Fluid Flows
流体流动的规律性、稳定性和湍流
- 批准号:
1907981 - 财政年份:2019
- 资助金额:
$ 31.94万 - 项目类别:
Standard Grant
On global stability and large-scale intermittent structures in subcritical wall-turbulence transition and complex fluid flows
亚临界壁面湍流转变和复杂流体流动中的全局稳定性和大规模间歇结构
- 批准号:
16H06066 - 财政年份:2016
- 资助金额:
$ 31.94万 - 项目类别:
Grant-in-Aid for Young Scientists (A)
Taming turbulence: Hydrodynamic stability and flow-structure interaction using grid-free computation
驯服湍流:使用无网格计算的水动力稳定性和流动结构相互作用
- 批准号:
DP0667240 - 财政年份:2006
- 资助金额:
$ 31.94万 - 项目类别:
Discovery Projects
Stability, nonlinear waves and turbulence in shear flows
剪切流中的稳定性、非线性波和湍流
- 批准号:
8764-2002 - 财政年份:2005
- 资助金额:
$ 31.94万 - 项目类别:
Discovery Grants Program - Individual
Stability, nonlinear waves and turbulence in shear flows
剪切流中的稳定性、非线性波和湍流
- 批准号:
8764-2002 - 财政年份:2004
- 资助金额:
$ 31.94万 - 项目类别:
Discovery Grants Program - Individual
Stability, nonlinear waves and turbulence in shear flows
剪切流中的稳定性、非线性波和湍流
- 批准号:
8764-2002 - 财政年份:2003
- 资助金额:
$ 31.94万 - 项目类别:
Discovery Grants Program - Individual
Stability, nonlinear waves and turbulence in shear flows
剪切流中的稳定性、非线性波和湍流
- 批准号:
8764-2002 - 财政年份:2002
- 资助金额:
$ 31.94万 - 项目类别:
Discovery Grants Program - Individual