SaTC: CORE: Medium: Collaborative: Using Machine Learning to Build More Resilient and Transparent Computer Systems
SaTC:核心:媒介:协作:使用机器学习构建更具弹性和透明的计算机系统
基本信息
- 批准号:1801494
- 负责人:
- 金额:$ 33.33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-01 至 2021-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Machine learning algorithms are increasingly part of everyday life: they help power the ads that we see while browsing the web, self-driving aids in modern cars, and even weather prediction and critical infrastructure. We rely on these algorithms in part because they perform better than alternatives and they can be easy to customize to new applications. Many machine learning algorithms also have a big weakness: it is difficult to understand how and why they compute the answers they provide. This opaqueness means that the answers we get from a machine learning algorithm could be subtly biased or even completely wrong, and yet we might not realize it. This project's goal is to make machine learning algorithms easier to understand, as well as to leverage some of the techniques used by attackers to trick machine learning algorithms into making mistakes to build computer systems that are more resistant to attack. In addition to making fundamental contributions to how machine learning algorithms are designed and used, the project includes outreach efforts that will entice students to gain hands-on experience with machine learning tools.This project focuses on deep neural networks (DNNs). A groundswell of research within the past five years has demonstrated the propensity of these models to being evaded by inputs created to fool them -- so called "adversarial examples." These types of attacks leverage DNNs' opacity: while DNNs can perform remarkably well on some classification tasks, they often defy simple explanations of how they do so, and indeed can leverage features for doing so that humans might find surprising. This project leverages DNNs and the attacks against them to gain insights into how to build more resilient computer systems. Specifically, the project will use DNNs to model adversaries trying to attack computer systems and then "attack" these DNNs to learn how to improve these systems' resilience to attack. This modeling will be done using Generative Adversarial Nets (GANs), in which "generator" and "discriminator" models compete. Central to this vision are the abilities to evade DNNs under constraints and to extract explanations from them about how they perform classification. Consequently, this project will make fundamental advances both in developing better methods to deceive DNNs and in improving this important machine-learning tool.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
机器学习算法越来越多地成为日常生活的一部分:它们帮助我们在浏览网页时看到的广告,现代汽车中的自动驾驶辅助设备,甚至天气预测和关键基础设施。我们依赖这些算法的部分原因是它们的性能优于其他算法,并且它们可以很容易地定制新的应用程序。许多机器学习算法也有一个很大的弱点:很难理解它们如何以及为什么计算它们提供的答案。这种不透明性意味着我们从机器学习算法中得到的答案可能存在微妙的偏见,甚至完全错误,但我们可能没有意识到这一点。该项目的目标是让机器学习算法更容易理解,并利用攻击者使用的一些技术来欺骗机器学习算法,使其出错,以构建更能抵抗攻击的计算机系统。除了对机器学习算法的设计和使用做出基本贡献外,该项目还包括推广工作,吸引学生获得机器学习工具的实践经验。该项目侧重于深度神经网络(DNN)。 在过去的五年里,大量的研究表明,这些模型倾向于被用来愚弄它们的输入所回避--所谓的“对抗性例子”。“这些类型的攻击利用了DNN的不透明性:虽然DNN在某些分类任务上表现得非常好,但它们往往无视对其如何做到这一点的简单解释,而且确实可以利用人类可能会感到惊讶的功能来做到这一点。该项目利用DNN及其攻击来深入了解如何构建更具弹性的计算机系统。具体来说,该项目将使用DNN来模拟试图攻击计算机系统的对手,然后“攻击”这些DNN,以了解如何提高这些系统对攻击的弹性。这种建模将使用生成对抗网络(GAN)完成,其中“生成器”和“代理”模型竞争。这一愿景的核心是在约束条件下规避DNN的能力,以及从DNN中提取关于它们如何执行分类的解释的能力。因此,该项目将在开发欺骗DNN的更好方法和改进这一重要机器学习工具方面取得根本性进展。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Statistical Privacy for Streaming Traffic
- DOI:10.14722/ndss.2019.23210
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Xiaokuan Zhang;Jihun Hamm;M. Reiter;Yinqian Zhang
- 通讯作者:Xiaokuan Zhang;Jihun Hamm;M. Reiter;Yinqian Zhang
A General Framework for Adversarial Examples with Objectives
- DOI:10.1145/3317611
- 发表时间:2019-07-01
- 期刊:
- 影响因子:2.3
- 作者:Sharif, Mahmood;Bhagavatula, Sruti;Reiter, Michael K.
- 通讯作者:Reiter, Michael K.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Reiter其他文献
Probabilistische Methode zur Modellierung des Ladeverhaltens von Elektroautos anhand gemessener Daten elektrischer Ladestationen – Auslastungsanalysen von Ladestationen unter Berücksichtigung des Standorts zur Planung von elektrischen Stromnetzen
- DOI:
10.1007/s00502-015-0299-0 - 发表时间:
2015-04-28 - 期刊:
- 影响因子:0.400
- 作者:
Thomas Wieland;Michael Reiter;Ernst Schmautzer;Lothar Fickert;Jürgen Fabian;Robert Schmied - 通讯作者:
Robert Schmied
Development of a serum-free liquid medium for Bartonella species
- DOI:
10.1007/s12223-016-0448-9 - 发表时间:
2016-02-02 - 期刊:
- 影响因子:3.100
- 作者:
Andreas Müller;Michael Reiter;Katrin Mantlik;Anna-Margarita Schötta;Hannes Stockinger;Gerold Stanek - 通讯作者:
Gerold Stanek
Classification of Holomorphic Mappings of Hyperquadrics from $$\mathbb {C}^2$$ to $$\mathbb {C}^3$$
- DOI:
10.1007/s12220-015-9594-6 - 发表时间:
2015-03-04 - 期刊:
- 影响因子:1.500
- 作者:
Michael Reiter - 通讯作者:
Michael Reiter
784 OVERCOMING RAD001 TRIGGERED RESISTANCE IN PROSTATE CANCER CDK1-CYCLIN B COMPLEX
- DOI:
10.1016/j.juro.2012.02.872 - 发表时间:
2012-04-01 - 期刊:
- 影响因子:
- 作者:
Igor Tsaur;Jasmina Makarevic;Michael Reiter;Martin Kurosch;Georg Bartsch;Christoph Wiesner;Steffen Wedel;Axel Haferkamp;Roman Blaheta - 通讯作者:
Roman Blaheta
Gleichzeitigkeitsfaktoren in der elektrischen Energieversorgung – Konventioneller und probabilistischer Ansatz
- DOI:
10.1007/s00502-014-0259-0 - 发表时间:
2014-11-27 - 期刊:
- 影响因子:0.400
- 作者:
Thomas Wieland;Michael Reiter;Ernst Schmautzer;Lothar Fickert;Mike Alexander Lagler;Siegfried Eberhart - 通讯作者:
Siegfried Eberhart
Michael Reiter的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Reiter', 18)}}的其他基金
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
- 批准号:
2338302 - 财政年份:2024
- 资助金额:
$ 33.33万 - 项目类别:
Continuing Grant
Collaborative Proposal: SaTC: Frontiers: Center for Distributed Confidential Computing (CDCC)
协作提案:SaTC:前沿:分布式机密计算中心 (CDCC)
- 批准号:
2207214 - 财政年份:2022
- 资助金额:
$ 33.33万 - 项目类别:
Continuing Grant
Collaborative Research: Conference: 2022 Secure and Trustworthy Cyberspace PI Meeting
协作研究:会议:2022年安全可信网络空间PI会议
- 批准号:
2205940 - 财政年份:2022
- 资助金额:
$ 33.33万 - 项目类别:
Standard Grant
SaTC: CORE: Medium: Collaborative: Using Machine Learning to Build More Resilient and Transparent Computer Systems
SaTC:核心:媒介:协作:使用机器学习构建更具弹性和透明的计算机系统
- 批准号:
2113345 - 财政年份:2021
- 资助金额:
$ 33.33万 - 项目类别:
Standard Grant
AitF: FULL: Collaborative Research: Practical Foundations for Software-Defined Network Optimization
AitF:完整:协作研究:软件定义网络优化的实践基础
- 批准号:
1535917 - 财政年份:2015
- 资助金额:
$ 33.33万 - 项目类别:
Standard Grant
TWC: Frontier: Collaborative: Rethinking Security in the Era of Cloud Computing
TWC:前沿:协作:重新思考云计算时代的安全性
- 批准号:
1330599 - 财政年份:2013
- 资助金额:
$ 33.33万 - 项目类别:
Continuing Grant
TWC SBES: Medium: Collaborative: Crowdsourcing Security
TWC SBES:媒介:协作:众包安全
- 批准号:
1228471 - 财政年份:2012
- 资助金额:
$ 33.33万 - 项目类别:
Standard Grant
TC: Small: Server-side Verification of Client Behavior in Distributed Applications
TC:小型:分布式应用程序中客户端行为的服务器端验证
- 批准号:
1115948 - 财政年份:2011
- 资助金额:
$ 33.33万 - 项目类别:
Standard Grant
FIA: Collaborative Research: MobilityFirst: A Robust and Trustworthy Mobility-Centric Architecture for the Future Internet
FIA:协作研究:MobilityFirst:面向未来互联网的稳健且值得信赖的以移动为中心的架构
- 批准号:
1040626 - 财政年份:2010
- 资助金额:
$ 33.33万 - 项目类别:
Standard Grant
TC: Large: Collaborative Research: Trustworthy Virtual Cloud Computing
TC:大型:协作研究:值得信赖的虚拟云计算
- 批准号:
0910483 - 财政年份:2009
- 资助金额:
$ 33.33万 - 项目类别:
Standard Grant
相似国自然基金
数字重庆建设背景下核心关键技术分析模型及应用研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
AI赋能职业教育:“智慧职教”平台教学视频核心知识抽取研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
SRCIN1-SRC介导的突触骨架动态失衡致自闭症核心症状的机制研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
运载火箭核心零部件纵环缝自动焊接技术研发
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
“三阶四融五机制”为核心的医学创新型人才全职业生涯培养体系构建研究
- 批准号:2025C35089
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
FUT8介导的核心岩藻糖基化修饰在威廉姆斯综合征神经发育中的作用与机制研究
- 批准号:QN25C090016
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
关键核心技术断链风险与微观企业投资行为
- 批准号:2025JJ60450
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
石上柏治疗缺血性中风核心功效物质挖掘及神经保护作用机理研究
- 批准号:2025JJ50571
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
探究游戏障碍者与电竞玩家核心临床特征差异的神经生物机制
- 批准号:2025JJ80613
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于网络药理学联合加权基因共表达网络分析探究急性高山病核心基因及中药应用研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
- 批准号:
2330940 - 财政年份:2024
- 资助金额:
$ 33.33万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
- 批准号:
2317232 - 财政年份:2024
- 资助金额:
$ 33.33万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
- 批准号:
2317233 - 财政年份:2024
- 资助金额:
$ 33.33万 - 项目类别:
Continuing Grant
SaTC: CORE: Medium: Testing the causal influence of social media on well-being and animosity
SaTC:核心:中:测试社交媒体对幸福感和敌意的因果影响
- 批准号:
2334148 - 财政年份:2024
- 资助金额:
$ 33.33万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
- 批准号:
2330941 - 财政年份:2024
- 资助金额:
$ 33.33万 - 项目类别:
Continuing Grant
SaTC: CORE: Medium: Increasing user autonomy and advertiser and platform responsibility in online advertising
SaTC:核心:中:增加在线广告中的用户自主权以及广告商和平台责任
- 批准号:
2318290 - 财政年份:2024
- 资助金额:
$ 33.33万 - 项目类别:
Continuing Grant
SaTC: CORE: Medium: Collaborative: Hardening Off-the-Shelf Software Against Side Channel Attacks
SaTC:核心:媒介:协作:强化现成软件以抵御侧通道攻击
- 批准号:
2425665 - 财政年份:2024
- 资助金额:
$ 33.33万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Understanding the Impact of Privacy Interventions on the Online Publishing Ecosystem
协作研究:SaTC:核心:媒介:了解隐私干预对在线出版生态系统的影响
- 批准号:
2237329 - 财政年份:2023
- 资助金额:
$ 33.33万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Medium: Securing Interactions between Driver and Vehicle Using Batteries
合作研究:SaTC:核心:中:使用电池确保驾驶员和车辆之间的交互安全
- 批准号:
2245224 - 财政年份:2023
- 资助金额:
$ 33.33万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Understanding and Combatting Impersonation Attacks and Data Leakage in Online Advertising
协作研究:SaTC:核心:媒介:理解和打击在线广告中的冒充攻击和数据泄露
- 批准号:
2247516 - 财政年份:2023
- 资助金额:
$ 33.33万 - 项目类别:
Continuing Grant