High Order and Efficient Numerical Methods for Simulating Electromagnetic Phenomena

模拟电磁现象的高阶高效数值方法

基本信息

  • 批准号:
    1802143
  • 负责人:
  • 金额:
    $ 11.92万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-10-02 至 2019-08-31
  • 项目状态:
    已结题

项目摘要

New materials with special properties are necessary in the search for new clean energy sources and advanced medical devices. Electromagnetic phenomena play a key role in the design of new materials such as meta-materials and conducting materials. Meta-materials, assembled with blocks of meta-atoms of naturally available components, have provided a wide range of new possibilities to design man-made materials with special properties. Novel devices using meta-materials have been proposed including perfect lens and sub-diffraction-limited imaging for medical applications, light harvest in clear energy solar cells. In addition, understanding the conducting flow of a charged system is essential for studying confined nuclear thermal reactions for the exploration of new clean energy sources.The computational simulation of electromagnetic phenomena is challenging, owing to the demand of highly accurate and efficient numerical methods that not only represent the correct physics in the magnetic induction equation but also resolve the multiple scattering and local field enhancements from random objects in meta-materials. To meet these requirements, the PIs will accomplish the following two tasks in this project: (1) to develop a highly efficient volume integral equation method for Maxwell equations for very accurate computation of multiple scatterings of large number of regular or random objects employed in the construction of meta-materials; (2) to devise a high order constrained transport finite element method for the magnetic induction equations in the magneto-hydrodynamics problem so the global divergence free condition on the magnetic field is preserved. The research findings will be disseminated through journal publications and software tool development.
在寻找新的清洁能源和先进的医疗设备时,需要具有特殊性能的新材料。电磁现象在超材料和导电材料等新材料的设计中起着关键作用。元材料是由天然成分的元原子块组装而成,为设计具有特殊性能的人造材料提供了广泛的新可能性。已经提出了使用超材料的新器件,包括用于医学应用的完美透镜和亚衍射极限成像,在清洁能源太阳能电池中的光收集。此外,理解带电系统的传导流对于研究受限核热反应以探索新的清洁能源是必不可少的。电磁现象的计算模拟是具有挑战性的,由于需要高精度和高效率的数值方法,这些方法不仅表示磁感应方程中的正确物理,而且还解决了来自磁感应方程的多次散射和局部场增强。超材料中的随机物体。为满足这些要求,研究员将在本项目中完成以下两项工作:(1)发展一种求解麦克斯韦方程的高效体积积分方程方法,用于非常精确地计算用于构建超材料的大量规则或随机物体的多重散射;(2)对磁流体力学中的磁感应方程组设计了一种高阶约束输运有限元方法,从而保持了磁场的全局无发散条件。研究结果将通过期刊出版物和软件工具开发传播。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Wei Cai其他文献

GW29-e1902 Branch Ostial Optimization Treatment and Optimized Provisional T-Stenting with Polymeric Bioresorbable Scaffolds: Ex Vivo Morphologic and Hemodynamic Examination
GW29-e1902 分支口优化治疗和使用聚合物生物可吸收支架优化临时 T 形支架:离体形态和血流动力学检查
Transcriptome profiling analysis of sex-based differentially expressed mRNAs and lncRNAs in the brains of mature zebrafish (Danio rerio)
成熟斑马鱼 (Danio rerio) 大脑中基于性别的差异表达 mRNA 和 lncRNA 的转录组分析
  • DOI:
    10.1186/s12864-019-6197-9
  • 发表时间:
    2019-07
  • 期刊:
  • 影响因子:
    4.4
  • 作者:
    Yuan Wenliang;Jiang Shouwen;Sun Dan;Wu Zhichao;Wei Cai;Dai Chaoxu;Jiang Linhua;Peng Sihua
  • 通讯作者:
    Peng Sihua
Understanding and manipulating the intrinsic point defect in α-MgAgSb for higher thermoelectric performance
了解和操纵α-MgAgSb 中的固有点缺陷以获得更高的热电性能
Influence of Particle Size on the Spin Pinning Effect in the fcc-FePt Nanoparticles
粒径对 fcc-FePt 纳米粒子自旋钉扎效应的影响
  • DOI:
    10.1007/s10948-019-5091-7
  • 发表时间:
    2019-04
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    Jing Yu;Dong Han;Yao Ying;Liang Qiao;Jingwu Zheng;Wangchang Li;Juan Li;Wei Cai;Shenglei Che;Naoki Wakiya;Hisao Suzuki
  • 通讯作者:
    Hisao Suzuki
Soundprint Feature Analysis of Main Transformers in a 500kV Substation
500kV变电站主变压器声纹特征分析

Wei Cai的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Wei Cai', 18)}}的其他基金

Deep Neural Network Machine Learning for Oscillatory Navier-Stokes Flows and Nonlinear Operators, and High Dimensional Fokker-Planck Equations
用于振荡纳维-斯托克斯流和非线性算子以及高维福克-普朗克方程的深度神经网络机器学习
  • 批准号:
    2207449
  • 财政年份:
    2022
  • 资助金额:
    $ 11.92万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Developing Damage Resistant Materials for Hydrogen Storage and Large-scale Transport
合作研究:DMREF:开发用于储氢和大规模运输的抗损伤材料
  • 批准号:
    2118522
  • 财政年份:
    2021
  • 资助金额:
    $ 11.92万
  • 项目类别:
    Continuing Grant
Collaborative Research: Multi-Scale Modeling and Numerical Methods for Charge Transport in Ion Channels
合作研究:离子通道中电荷传输的多尺度建模和数值方法
  • 批准号:
    1950471
  • 财政年份:
    2020
  • 资助金额:
    $ 11.92万
  • 项目类别:
    Continuing Grant
Path Integral Monte Carlo Methods for Computing Polarizability Tensors of Nano-materials and Electrical Impedance Tomography
计算纳米材料极化张量和电阻抗断层扫描的路径积分蒙特卡罗方法
  • 批准号:
    1719303
  • 财政年份:
    2017
  • 资助金额:
    $ 11.92万
  • 项目类别:
    Standard Grant
Path Integral Monte Carlo Methods for Computing Polarizability Tensors of Nano-materials and Electrical Impedance Tomography
计算纳米材料极化张量和电阻抗断层扫描的路径积分蒙特卡罗方法
  • 批准号:
    1764187
  • 财政年份:
    2017
  • 资助金额:
    $ 11.92万
  • 项目类别:
    Standard Grant
High Order and Efficient Numerical Methods for Simulating Electromagnetic Phenomena
模拟电磁现象的高阶高效数值方法
  • 批准号:
    1619713
  • 财政年份:
    2016
  • 资助金额:
    $ 11.92万
  • 项目类别:
    Standard Grant
Student Travel: 7th International Conference on Multiscale Materials Modeling; Berkeley, California; 6-10 October 2014
学生旅行:第七届多尺度材料建模国际会议;
  • 批准号:
    1444609
  • 财政年份:
    2014
  • 资助金额:
    $ 11.92万
  • 项目类别:
    Standard Grant
A parallel Poisson/Helmholtz solver using local boundary integral equation and random walk methods
使用局部边界积分方程和随机游走方法的并行泊松/亥姆霍兹求解器
  • 批准号:
    1315128
  • 财政年份:
    2013
  • 资助金额:
    $ 11.92万
  • 项目类别:
    Standard Grant
Structural Transitions during Catalyzed Growth of Semiconductor Nanowires
半导体纳米线催化生长过程中的结构转变
  • 批准号:
    1206511
  • 财政年份:
    2012
  • 资助金额:
    $ 11.92万
  • 项目类别:
    Continuing Grant
Numerical Methods for Wave Propagations in Inhomogeneous Media
非均匀介质中波传播的数值方法
  • 批准号:
    1005441
  • 财政年份:
    2010
  • 资助金额:
    $ 11.92万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: Accurate and Structure-Preserving Numerical Schemes for Variable Temperature Phase Field Models and Efficient Solvers
合作研究:用于变温相场模型和高效求解器的精确且结构保持的数值方案
  • 批准号:
    2309547
  • 财政年份:
    2023
  • 资助金额:
    $ 11.92万
  • 项目类别:
    Standard Grant
Exploration of efficient turbulence stimulation method with data assimilation of numerical simulation and measurement
数值模拟与测量数据同化的高效湍流模拟方法探索
  • 批准号:
    23H01622
  • 财政年份:
    2023
  • 资助金额:
    $ 11.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Scalable Bayesian regression: Analytical and numerical tools for efficient Bayesian analysis in the large data regime
可扩展贝叶斯回归:在大数据领域进行高效贝叶斯分析的分析和数值工具
  • 批准号:
    2311354
  • 财政年份:
    2023
  • 资助金额:
    $ 11.92万
  • 项目类别:
    Standard Grant
Collaborative Research: Accurate and Structure-Preserving Numerical Schemes for Variable Temperature Phase Field Models and Efficient Solvers
合作研究:用于变温相场模型和高效求解器的精确且结构保持的数值方案
  • 批准号:
    2309548
  • 财政年份:
    2023
  • 资助金额:
    $ 11.92万
  • 项目类别:
    Standard Grant
Robust and Efficient Numerical Methods for Wave Equations in the Time Domain: Nonlinear and Multiscale Problems
时域波动方程的鲁棒高效数值方法:非线性和多尺度问题
  • 批准号:
    2309687
  • 财政年份:
    2023
  • 资助金额:
    $ 11.92万
  • 项目类别:
    Standard Grant
Developing Efficient Numerical Algorithms Using Fast Bayesian Random Forests
使用快速贝叶斯随机森林开发高效的数值算法
  • 批准号:
    2748743
  • 财政年份:
    2022
  • 资助金额:
    $ 11.92万
  • 项目类别:
    Studentship
Efficient numerical methods for wave-action transport and scattering
波作用输运和散射的高效数值方法
  • 批准号:
    EP/W007436/1
  • 财政年份:
    2022
  • 资助金额:
    $ 11.92万
  • 项目类别:
    Research Grant
Efficient and well-balanced numerical methods for nonhydrostatic three-dimensional shallow flows with moving beds and boundaries
具有移动床和边界的非静水三维浅流的高效且平衡的数值方法
  • 批准号:
    RGPAS-2020-00102
  • 财政年份:
    2022
  • 资助金额:
    $ 11.92万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Efficient and well-balanced numerical methods for nonhydrostatic three-dimensional shallow flows with moving beds and boundaries
具有移动床和边界的非静水三维浅流的高效且平衡的数值方法
  • 批准号:
    RGPIN-2020-06278
  • 财政年份:
    2022
  • 资助金额:
    $ 11.92万
  • 项目类别:
    Discovery Grants Program - Individual
Accurate and Efficient Computational Methods for the Numerical Solution of High-Dimensional Partial Differential Equations in Computational Finance
计算金融中高维偏微分方程数值解的准确高效计算方法
  • 批准号:
    569181-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 11.92万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了