High Order and Efficient Numerical Methods for Simulating Electromagnetic Phenomena
模拟电磁现象的高阶高效数值方法
基本信息
- 批准号:1802143
- 负责人:
- 金额:$ 11.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-10-02 至 2019-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
New materials with special properties are necessary in the search for new clean energy sources and advanced medical devices. Electromagnetic phenomena play a key role in the design of new materials such as meta-materials and conducting materials. Meta-materials, assembled with blocks of meta-atoms of naturally available components, have provided a wide range of new possibilities to design man-made materials with special properties. Novel devices using meta-materials have been proposed including perfect lens and sub-diffraction-limited imaging for medical applications, light harvest in clear energy solar cells. In addition, understanding the conducting flow of a charged system is essential for studying confined nuclear thermal reactions for the exploration of new clean energy sources.The computational simulation of electromagnetic phenomena is challenging, owing to the demand of highly accurate and efficient numerical methods that not only represent the correct physics in the magnetic induction equation but also resolve the multiple scattering and local field enhancements from random objects in meta-materials. To meet these requirements, the PIs will accomplish the following two tasks in this project: (1) to develop a highly efficient volume integral equation method for Maxwell equations for very accurate computation of multiple scatterings of large number of regular or random objects employed in the construction of meta-materials; (2) to devise a high order constrained transport finite element method for the magnetic induction equations in the magneto-hydrodynamics problem so the global divergence free condition on the magnetic field is preserved. The research findings will be disseminated through journal publications and software tool development.
在寻找新的清洁能源和先进的医疗设备中,具有特殊性能的新材料是必不可少的。电磁现象在超材料和导电材料等新材料的设计中起着关键作用。由天然成分的元原子块组装而成的超材料,为设计具有特殊性能的人造材料提供了广泛的新可能性。使用超材料的新设备已被提出,包括用于医疗应用的完美透镜和亚衍射限制成像,在清洁能源太阳能电池中收获光。此外,了解带电体系的传导流对于研究限制核热反应以探索新的清洁能源是必不可少的。电磁现象的计算模拟具有挑战性,因为需要高精度和高效的数值方法,不仅要能正确地表示磁感应方程中的物理性质,而且要能解决超材料中随机物体的多重散射和局部场增强问题。为了满足这些要求,pi将在本项目中完成以下两项任务:(1)开发一种高效的麦克斯韦方程体积积分方程方法,用于非常精确地计算用于构建超材料的大量规则或随机物体的多次散射;(2)为磁流体动力学问题中磁感应方程设计了一种高阶约束输运有限元法,使磁场的全局散度自由条件保持不变。研究结果将通过期刊出版物和软件工具开发进行传播。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wei Cai其他文献
Transcriptome profiling analysis of sex-based differentially expressed mRNAs and lncRNAs in the brains of mature zebrafish (Danio rerio)
成熟斑马鱼 (Danio rerio) 大脑中基于性别的差异表达 mRNA 和 lncRNA 的转录组分析
- DOI:
10.1186/s12864-019-6197-9 - 发表时间:
2019-07 - 期刊:
- 影响因子:4.4
- 作者:
Yuan Wenliang;Jiang Shouwen;Sun Dan;Wu Zhichao;Wei Cai;Dai Chaoxu;Jiang Linhua;Peng Sihua - 通讯作者:
Peng Sihua
Fabrication of lithium niobate metasurfaces via a combination of FIB and ICP-RIE
结合 FIB 和 ICP-RIE 制造铌酸锂超表面
- DOI:
10.3788/col202220.113602 - 发表时间:
2022 - 期刊:
- 影响因子:3.5
- 作者:
Chunyan Jin;Wei Wu;Lei Cao;Bofeng Gao;Jiaxin Chen;Wei Cai;Mengxin Ren;Jingjun Xu - 通讯作者:
Jingjun Xu
Study on the structure and properties of (1-x) BiYbO3-xBaTiO3 ceramics synthesized by sol–gel method
溶胶凝胶法合成(1-x)BiYbO3-xBaTiO3陶瓷的结构与性能研究
- DOI:
10.1080/00150193.2017.1283577 - 发表时间:
2017-01 - 期刊:
- 影响因子:0.8
- 作者:
Gang Chen;Chunlin Deng;Xiaodong Peng;Chunlin Fu;Wei Cai;Rongli Gao;Xiaoling Deng - 通讯作者:
Xiaoling Deng
From RORγt Agonist to Two Types of RORγt Inverse Agonists
从 RORγt 激动剂到两种类型的 RORγt 反向激动剂
- DOI:
10.1021/acsmedchemlett.7b00476 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Yonghui Wang;Wei Cai;Ting Tang;Qian Liu;Ting Yang;Liuqing Yang;Yingli Ma;Guifeng Zhang;Yafei Huang;Xiaoxia Song;Lisa A. Orb;-Miller;Qianqian Wu;Ling Zhou;Zhijun Xiang;Jia-Ning Xiang;Stewart Leung;Liming Shao;Xichen Lin;Mercedes Lobera;Feng Ren - 通讯作者:
Feng Ren
DeepMartNet - A Martingale based Deep Neural Network learning algorithm for Eigenvalue Problems in High Dimensions
DeepMartNet - 用于高维特征值问题的基于 Martingale 的深度神经网络学习算法
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Wei Cai - 通讯作者:
Wei Cai
Wei Cai的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wei Cai', 18)}}的其他基金
Deep Neural Network Machine Learning for Oscillatory Navier-Stokes Flows and Nonlinear Operators, and High Dimensional Fokker-Planck Equations
用于振荡纳维-斯托克斯流和非线性算子以及高维福克-普朗克方程的深度神经网络机器学习
- 批准号:
2207449 - 财政年份:2022
- 资助金额:
$ 11.92万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Developing Damage Resistant Materials for Hydrogen Storage and Large-scale Transport
合作研究:DMREF:开发用于储氢和大规模运输的抗损伤材料
- 批准号:
2118522 - 财政年份:2021
- 资助金额:
$ 11.92万 - 项目类别:
Continuing Grant
Collaborative Research: Multi-Scale Modeling and Numerical Methods for Charge Transport in Ion Channels
合作研究:离子通道中电荷传输的多尺度建模和数值方法
- 批准号:
1950471 - 财政年份:2020
- 资助金额:
$ 11.92万 - 项目类别:
Continuing Grant
Path Integral Monte Carlo Methods for Computing Polarizability Tensors of Nano-materials and Electrical Impedance Tomography
计算纳米材料极化张量和电阻抗断层扫描的路径积分蒙特卡罗方法
- 批准号:
1719303 - 财政年份:2017
- 资助金额:
$ 11.92万 - 项目类别:
Standard Grant
Path Integral Monte Carlo Methods for Computing Polarizability Tensors of Nano-materials and Electrical Impedance Tomography
计算纳米材料极化张量和电阻抗断层扫描的路径积分蒙特卡罗方法
- 批准号:
1764187 - 财政年份:2017
- 资助金额:
$ 11.92万 - 项目类别:
Standard Grant
High Order and Efficient Numerical Methods for Simulating Electromagnetic Phenomena
模拟电磁现象的高阶高效数值方法
- 批准号:
1619713 - 财政年份:2016
- 资助金额:
$ 11.92万 - 项目类别:
Standard Grant
Student Travel: 7th International Conference on Multiscale Materials Modeling; Berkeley, California; 6-10 October 2014
学生旅行:第七届多尺度材料建模国际会议;
- 批准号:
1444609 - 财政年份:2014
- 资助金额:
$ 11.92万 - 项目类别:
Standard Grant
A parallel Poisson/Helmholtz solver using local boundary integral equation and random walk methods
使用局部边界积分方程和随机游走方法的并行泊松/亥姆霍兹求解器
- 批准号:
1315128 - 财政年份:2013
- 资助金额:
$ 11.92万 - 项目类别:
Standard Grant
Structural Transitions during Catalyzed Growth of Semiconductor Nanowires
半导体纳米线催化生长过程中的结构转变
- 批准号:
1206511 - 财政年份:2012
- 资助金额:
$ 11.92万 - 项目类别:
Continuing Grant
Numerical Methods for Wave Propagations in Inhomogeneous Media
非均匀介质中波传播的数值方法
- 批准号:
1005441 - 财政年份:2010
- 资助金额:
$ 11.92万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: Accurate and Structure-Preserving Numerical Schemes for Variable Temperature Phase Field Models and Efficient Solvers
合作研究:用于变温相场模型和高效求解器的精确且结构保持的数值方案
- 批准号:
2309547 - 财政年份:2023
- 资助金额:
$ 11.92万 - 项目类别:
Standard Grant
Exploration of efficient turbulence stimulation method with data assimilation of numerical simulation and measurement
数值模拟与测量数据同化的高效湍流模拟方法探索
- 批准号:
23H01622 - 财政年份:2023
- 资助金额:
$ 11.92万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Scalable Bayesian regression: Analytical and numerical tools for efficient Bayesian analysis in the large data regime
可扩展贝叶斯回归:在大数据领域进行高效贝叶斯分析的分析和数值工具
- 批准号:
2311354 - 财政年份:2023
- 资助金额:
$ 11.92万 - 项目类别:
Standard Grant
Collaborative Research: Accurate and Structure-Preserving Numerical Schemes for Variable Temperature Phase Field Models and Efficient Solvers
合作研究:用于变温相场模型和高效求解器的精确且结构保持的数值方案
- 批准号:
2309548 - 财政年份:2023
- 资助金额:
$ 11.92万 - 项目类别:
Standard Grant
Robust and Efficient Numerical Methods for Wave Equations in the Time Domain: Nonlinear and Multiscale Problems
时域波动方程的鲁棒高效数值方法:非线性和多尺度问题
- 批准号:
2309687 - 财政年份:2023
- 资助金额:
$ 11.92万 - 项目类别:
Standard Grant
Developing Efficient Numerical Algorithms Using Fast Bayesian Random Forests
使用快速贝叶斯随机森林开发高效的数值算法
- 批准号:
2748743 - 财政年份:2022
- 资助金额:
$ 11.92万 - 项目类别:
Studentship
Efficient numerical methods for wave-action transport and scattering
波作用输运和散射的高效数值方法
- 批准号:
EP/W007436/1 - 财政年份:2022
- 资助金额:
$ 11.92万 - 项目类别:
Research Grant
Efficient and well-balanced numerical methods for nonhydrostatic three-dimensional shallow flows with moving beds and boundaries
具有移动床和边界的非静水三维浅流的高效且平衡的数值方法
- 批准号:
RGPAS-2020-00102 - 财政年份:2022
- 资助金额:
$ 11.92万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Efficient and well-balanced numerical methods for nonhydrostatic three-dimensional shallow flows with moving beds and boundaries
具有移动床和边界的非静水三维浅流的高效且平衡的数值方法
- 批准号:
RGPIN-2020-06278 - 财政年份:2022
- 资助金额:
$ 11.92万 - 项目类别:
Discovery Grants Program - Individual
Accurate and Efficient Computational Methods for the Numerical Solution of High-Dimensional Partial Differential Equations in Computational Finance
计算金融中高维偏微分方程数值解的准确高效计算方法
- 批准号:
569181-2022 - 财政年份:2022
- 资助金额:
$ 11.92万 - 项目类别:
Postgraduate Scholarships - Doctoral