Numerical Methods for Wave Propagations in Inhomogeneous Media
非均匀介质中波传播的数值方法
基本信息
- 批准号:1005441
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-09-15 至 2014-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In this proposal, the PI will develop numerical methods and their mathematical analysis, ultimately their implementations in studying wave phenomena in nano-electronics, coupled arrays of quantum dots, and phase shift masks in lithography. Propagation of classical electromagnetic and quantum waves plays a key role in these physical and engineering systems. In order to gain a quantitative understanding of the wave phenomena in those systems, accurate and efficient numerical simulations are needed with appropriately designed numerical algorithms. The targeted applications motivate our research with the following three proposed numerical methods: [1] An adaptive conservative cell average spectral method for Wigner equations in electron transport of nano-electronics; [2] A fast integral solver for quantum wave scattering in 3-D quantum dots in layered media [3] A parallel spectral element method based on eigen-oscillations for complex Helmholtz equations. The potential technology impact of this research is to understand the physics involved and provide design guidelines for nano-electronics such as nano-MOSFETs, phase shift masks, and quantum dots. The numerical methods developed in this research will be used for the engineering design of quantum devices with significant impact on maintaining US technology preeminence in the development of new VLSI microchips, and next generation X-ray lithography in microchip manufacturing. Also, graduate students trained in this project will provide skilled workforce in the competitive high technology job market as well as potential academic researchers.
在这项提案中,PI将开发数值方法及其数学分析,最终将其应用于研究纳米电子学中的波动现象,量子点耦合阵列和光刻中的相移掩模。经典电磁波和量子波的传播在这些物理和工程系统中起着关键作用。为了定量地了解这些系统中的波动现象,需要使用适当设计的数值算法进行准确有效的数值模拟。 针对这些应用,我们提出了以下三种数值方法:[1]纳米电子学电子输运中Wigner方程的自适应守恒单元平均谱方法; [2]三维量子点中量子波散射的快速积分求解器;[3]复杂Helmholtz方程基于本征振荡的并行谱元方法。这项研究的潜在技术影响是了解所涉及的物理学,并为纳米MOSFET,相移掩模和量子点等纳米电子器件提供设计指南。 在这项研究中开发的数值方法将用于量子器件的工程设计,对保持美国在开发新的VLSI微芯片和微芯片制造中的下一代X射线光刻技术方面的技术优势产生重大影响。此外,在这个项目中培训的研究生将在竞争激烈的高科技就业市场提供熟练的劳动力,以及潜在的学术研究人员。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wei Cai其他文献
Transcriptome profiling analysis of sex-based differentially expressed mRNAs and lncRNAs in the brains of mature zebrafish (Danio rerio)
成熟斑马鱼 (Danio rerio) 大脑中基于性别的差异表达 mRNA 和 lncRNA 的转录组分析
- DOI:
10.1186/s12864-019-6197-9 - 发表时间:
2019-07 - 期刊:
- 影响因子:4.4
- 作者:
Yuan Wenliang;Jiang Shouwen;Sun Dan;Wu Zhichao;Wei Cai;Dai Chaoxu;Jiang Linhua;Peng Sihua - 通讯作者:
Peng Sihua
Fabrication of lithium niobate metasurfaces via a combination of FIB and ICP-RIE
结合 FIB 和 ICP-RIE 制造铌酸锂超表面
- DOI:
10.3788/col202220.113602 - 发表时间:
2022 - 期刊:
- 影响因子:3.5
- 作者:
Chunyan Jin;Wei Wu;Lei Cao;Bofeng Gao;Jiaxin Chen;Wei Cai;Mengxin Ren;Jingjun Xu - 通讯作者:
Jingjun Xu
Study on the structure and properties of (1-x) BiYbO3-xBaTiO3 ceramics synthesized by sol–gel method
溶胶凝胶法合成(1-x)BiYbO3-xBaTiO3陶瓷的结构与性能研究
- DOI:
10.1080/00150193.2017.1283577 - 发表时间:
2017-01 - 期刊:
- 影响因子:0.8
- 作者:
Gang Chen;Chunlin Deng;Xiaodong Peng;Chunlin Fu;Wei Cai;Rongli Gao;Xiaoling Deng - 通讯作者:
Xiaoling Deng
From RORγt Agonist to Two Types of RORγt Inverse Agonists
从 RORγt 激动剂到两种类型的 RORγt 反向激动剂
- DOI:
10.1021/acsmedchemlett.7b00476 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Yonghui Wang;Wei Cai;Ting Tang;Qian Liu;Ting Yang;Liuqing Yang;Yingli Ma;Guifeng Zhang;Yafei Huang;Xiaoxia Song;Lisa A. Orb;-Miller;Qianqian Wu;Ling Zhou;Zhijun Xiang;Jia-Ning Xiang;Stewart Leung;Liming Shao;Xichen Lin;Mercedes Lobera;Feng Ren - 通讯作者:
Feng Ren
DeepMartNet - A Martingale based Deep Neural Network learning algorithm for Eigenvalue Problems in High Dimensions
DeepMartNet - 用于高维特征值问题的基于 Martingale 的深度神经网络学习算法
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Wei Cai - 通讯作者:
Wei Cai
Wei Cai的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wei Cai', 18)}}的其他基金
Deep Neural Network Machine Learning for Oscillatory Navier-Stokes Flows and Nonlinear Operators, and High Dimensional Fokker-Planck Equations
用于振荡纳维-斯托克斯流和非线性算子以及高维福克-普朗克方程的深度神经网络机器学习
- 批准号:
2207449 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Developing Damage Resistant Materials for Hydrogen Storage and Large-scale Transport
合作研究:DMREF:开发用于储氢和大规模运输的抗损伤材料
- 批准号:
2118522 - 财政年份:2021
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Collaborative Research: Multi-Scale Modeling and Numerical Methods for Charge Transport in Ion Channels
合作研究:离子通道中电荷传输的多尺度建模和数值方法
- 批准号:
1950471 - 财政年份:2020
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
High Order and Efficient Numerical Methods for Simulating Electromagnetic Phenomena
模拟电磁现象的高阶高效数值方法
- 批准号:
1802143 - 财政年份:2017
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Path Integral Monte Carlo Methods for Computing Polarizability Tensors of Nano-materials and Electrical Impedance Tomography
计算纳米材料极化张量和电阻抗断层扫描的路径积分蒙特卡罗方法
- 批准号:
1719303 - 财政年份:2017
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Path Integral Monte Carlo Methods for Computing Polarizability Tensors of Nano-materials and Electrical Impedance Tomography
计算纳米材料极化张量和电阻抗断层扫描的路径积分蒙特卡罗方法
- 批准号:
1764187 - 财政年份:2017
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
High Order and Efficient Numerical Methods for Simulating Electromagnetic Phenomena
模拟电磁现象的高阶高效数值方法
- 批准号:
1619713 - 财政年份:2016
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Student Travel: 7th International Conference on Multiscale Materials Modeling; Berkeley, California; 6-10 October 2014
学生旅行:第七届多尺度材料建模国际会议;
- 批准号:
1444609 - 财政年份:2014
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
A parallel Poisson/Helmholtz solver using local boundary integral equation and random walk methods
使用局部边界积分方程和随机游走方法的并行泊松/亥姆霍兹求解器
- 批准号:
1315128 - 财政年份:2013
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Structural Transitions during Catalyzed Growth of Semiconductor Nanowires
半导体纳米线催化生长过程中的结构转变
- 批准号:
1206511 - 财政年份:2012
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
相似国自然基金
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Robust and Efficient Numerical Methods for Wave Equations in the Time Domain: Nonlinear and Multiscale Problems
时域波动方程的鲁棒高效数值方法:非线性和多尺度问题
- 批准号:
2309687 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Development of numerical methods for solving unsteady shock waves stably and correctly and its application to shock wave interaction phenomena
稳定正确求解非定常冲击波数值方法的发展及其在冲击波相互作用现象中的应用
- 批准号:
23KJ0981 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Efficient numerical methods for wave-action transport and scattering
波作用输运和散射的高效数值方法
- 批准号:
EP/W007436/1 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Research Grant
Numerical Methods for Wave Equations in Time and Frequency Domain
时域和频域波动方程的数值方法
- 批准号:
2210286 - 财政年份:2021
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Novel Methods for Numerical Simulation of Wave Propagation in Inhomogeneous Media
非均匀介质中波传播数值模拟的新方法
- 批准号:
2110407 - 财政年份:2021
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Development of wave-based numerical methods able to predict room acoustics at full audible ranges
开发基于波的数值方法,能够在整个可听范围内预测室内声学
- 批准号:
20K04806 - 财政年份:2020
- 资助金额:
$ 20万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Robust and Efficient Numerical Methods for Electromagnetic Wave Propagation in Complex Media
复杂介质中电磁波传播的鲁棒高效数值方法
- 批准号:
2011943 - 财政年份:2020
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Advances in Numerical Methods for Wave Propagation in Inhomogeneous Media
非均匀介质中波传播数值方法的进展
- 批准号:
2105487 - 财政年份:2020
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Numerical Methods for Wave Equations in Time and Frequency Domain
时域和频域波动方程的数值方法
- 批准号:
1913076 - 财政年份:2019
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
High Order Numerical Methods for Gravitational Wave Computations
引力波计算的高阶数值方法
- 批准号:
1912716 - 财政年份:2019
- 资助金额:
$ 20万 - 项目类别:
Standard Grant














{{item.name}}会员




