NSF-BSF: Steering Selectivity in Aldol Reactions by Control of Relative Effective Reaction Rates in Porous Catalysts

NSF-BSF:通过控制多孔催化剂中的相对有效反应速率来控制羟醛反应的选择性

基本信息

  • 批准号:
    1804041
  • 负责人:
  • 金额:
    $ 33万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-09-01 至 2023-05-31
  • 项目状态:
    已结题

项目摘要

This project, funded under the National Science Foundation (NSF) and US-Israel Binational Science Foundation (BSF) collaborative opportunity NSF 17-520, focuses on the study of catalysis to make chemical processes more environmentally friendly by reducing chemical waste. The chemical transformation of interest is the aldol condensation, which results in a new bond between two carbon atoms. Aldol condensation is an essential reaction in many syntheses of bulk, fine, and specialty chemicals. This reaction shows promise for upgrading biomass-derived feedstocks to fuels or chemicals. The objective is to steer this chemical reaction to give the desired product without generating a multitude of side products. The approach is to develop new solid catalysts and, by varying their surface chemical composition and pore morphology, tune their chemical and physical properties for optimal performance. The new knowledge and fundamental understanding emerging from this collaborative work between the University of Massachusetts Amherst and the Technion-Israel Institute of Technology will serve to better direct aldol condensations and other similarly complex and pivotal chemical reactions. In addition, the project will contribute to U.S. competitiveness in chemical manufacturing of biorenewable products and will promote training of a diverse workforce skilled in biomass processing. Aldol reactions consist of two sequential steps, addition and subsequent dehydration. Cross aldol condensations, particularly those involving unsymmetrical ketones, can lead to a multitude of primary and secondary products. The central hypothesis of this project is that selectivity in aldol reactions, which is governed by relative effective reaction rates, can be tuned by tailoring the active surface sites and effectiveness factors. While theory on the influence of transport limitations on the selectivity in parallel and sequential reactions has been outlined long ago, there are few realizations of these concepts in complex liquid phase reactions. This research project rigorously tests the practical viability of these concepts by manipulating surface chemistry and pore structure of the catalysts. The main catalyst platform is layered double hydroxides, because they allow for a wide and independent variation of chemical and physical properties; that is, acid-base and pore characteristics can be tailored. Porous model materials serve to independently investigate transport limitations. Reactant complexity and reaction conditions are varied to ensure broad validity of the findings. The project benefits from complementary expertise and instrumental capability at the U.S. institution and at Technion in Israel. Student training will include visits of the partner laboratory and a subject-relevant graduate course. The participation of women in science is sought to be broadened through appropriate recruiting efforts and outreach activities targeting female high school students.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目由国家科学基金会(NSF)和美国 - 以色列双原则科学基金会(BSF)协作机会NSF 17-520资助,重点介绍通过减少化学废物使化学过程更加环保的催化研究。感兴趣的化学转化是醛醇冷凝,这导致两个碳原子之间的新键。在许多散装,精细和特种化学物质的合成中,藻类凝结是必不可少的反应。该反应显示了将生物质衍生的原料升级为燃料或化学物质的希望。目的是引导这种化学反应以提供所需的产品,而不会产生多种侧产品。该方法是开发新的固体催化剂,并通过改变其表面化学成分和孔形态,调整其化学和物理特性以获得最佳性能。马萨诸塞大学阿默斯特大学和技术 - 以色列技术研究所之间的这项合作工作中得出的新知识和基本理解将有助于更好地指导aldol凝结以及其他类似复杂和关键的化学反应。 此外,该项目将有助于美国在可生物生物产品的化学制造中的竞争力,并将促进对生物量处理的多样化劳动力的培训。 藻反应由两个顺序步骤组成:加法和随后的脱水。交叉醛醇冷凝物,尤其是涉及不对称酮的凝结,可能导致众多的原代和次要产品。该项目的中心假设是,可以通过调整活性表面位点和有效性因素来调整藻反应中的选择性。虽然很久以前就概述了有关限制对并行和顺序反应中选择性的影响的理论,但在复杂的液相反应中,这些概念几乎没有实现。该研究项目通过操纵催化剂的表面化学和孔结构来严格测试这些概念的实际生存能力。主要的催化剂平台是分层的双氢氧化物,因为它们允许化学和物理性质的广泛而独立的变化。也就是说,可以定制酸碱和孔特性。多孔模型材料可独立研究运输限制。反应物的复杂性和反应条件变化以确保发现的较大有效性。该项目受益于美国机构和以色列技术的补充专业知识和工具能力。学生培训将包括对合作伙伴实验室的访问和与学科相关的研究生课程。通过适当的招募工作和针对女性高中生的宣传活动来扩大妇女参与科学的参与。该奖项反映了NSF的法定任务,并使用基金会的知识分子优点和更广泛的影响审查标准,认为值得通过评估来获得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Elucidating Cooperative Interactions between Grafted Amines and Tin or Titanium Sites on Silica
  • DOI:
    10.1021/acscatal.2c02276
  • 发表时间:
    2022-07
  • 期刊:
  • 影响因子:
    12.9
  • 作者:
    Christine Khoury;S. Holton;Dina Shpasser;Elior Hallo;A. Kulkarni;F. Jentoft;Oz M. Gazit
  • 通讯作者:
    Christine Khoury;S. Holton;Dina Shpasser;Elior Hallo;A. Kulkarni;F. Jentoft;Oz M. Gazit
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Friederike Jentoft其他文献

Friederike Jentoft的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Friederike Jentoft', 18)}}的其他基金

NSF-BSF: Mechanism-Guided Design of Deoxydehydration Catalysts
NSF-BSF:脱氧脱水催化剂的机理引导设计
  • 批准号:
    2227945
  • 财政年份:
    2022
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
International Collaboration in Chemistry: Tuning Catalyst Surfaces to Control Aldol Reactions in Biomass Conversion
国际化学合作:调整催化剂表面以控制生物质转化中的羟醛反应
  • 批准号:
    1560519
  • 财政年份:
    2015
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
Catalytic Deoxydehydration of Biomass-Derived Polyols to Olefins
生物质多元醇催化脱氧脱水制烯烃
  • 批准号:
    1630100
  • 财政年份:
    2015
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
Catalytic Deoxydehydration of Biomass-Derived Polyols to Olefins
生物质多元醇催化脱氧脱水制烯烃
  • 批准号:
    1160219
  • 财政年份:
    2012
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
International Collaboration in Chemistry: Tuning Catalyst Surfaces to Control Aldol Reactions in Biomass Conversion
国际化学合作:调整催化剂表面以控制生物质转化中的羟醛反应
  • 批准号:
    1224056
  • 财政年份:
    2012
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
MRI: Acquisition of Thermal Analysis and Calorimetry Equipment for Multiple Applications Emphasizing Research on Sustainable Fuels
MRI:采购热分析和量热设备用于多种应用,强调可持续燃料的研究
  • 批准号:
    0923247
  • 财政年份:
    2009
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant

相似国自然基金

枯草芽孢杆菌BSF01降解高效氯氰菊酯的种内群体感应机制研究
  • 批准号:
    31871988
  • 批准年份:
    2018
  • 资助金额:
    59.0 万元
  • 项目类别:
    面上项目
基于掺硼直拉单晶硅片的Al-BSF和PERC太阳电池光衰及其抑制的基础研究
  • 批准号:
    61774171
  • 批准年份:
    2017
  • 资助金额:
    63.0 万元
  • 项目类别:
    面上项目
B细胞刺激因子-2(BSF-2)与自身免疫病的关系
  • 批准号:
    38870708
  • 批准年份:
    1988
  • 资助金额:
    3.0 万元
  • 项目类别:
    面上项目

相似海外基金

NSF-BSF: Many-Body Physics of Quantum Computation
NSF-BSF:量子计算的多体物理学
  • 批准号:
    2338819
  • 财政年份:
    2024
  • 资助金额:
    $ 33万
  • 项目类别:
    Continuing Grant
NSF-BSF: Towards a Molecular Understanding of Dynamic Active Sites in Advanced Alkaline Water Oxidation Catalysts
NSF-BSF:高级碱性水氧化催化剂动态活性位点的分子理解
  • 批准号:
    2400195
  • 财政年份:
    2024
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-BSF: Under Pressure: The evolution of guard cell turgor and the rise of the angiosperms
合作研究:NSF-BSF:压力之下:保卫细胞膨压的进化和被子植物的兴起
  • 批准号:
    2333889
  • 财政年份:
    2024
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-BSF: Under Pressure: The evolution of guard cell turgor and the rise of the angiosperms
合作研究:NSF-BSF:压力之下:保卫细胞膨压的进化和被子植物的兴起
  • 批准号:
    2333888
  • 财政年份:
    2024
  • 资助金额:
    $ 33万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
  • 批准号:
    2321481
  • 财政年份:
    2024
  • 资助金额:
    $ 33万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了