Mechanistic Elucidation of Thermal Runaway in Potassium-Ion Batteries
钾离子电池热失控的机理阐明
基本信息
- 批准号:1804300
- 负责人:
- 金额:$ 34.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-06-01 至 2022-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Increased use of renewable energy sources such as solar and wind results in a growing need for research addressing efficient and inexpensive energy storage technologies. Due to the intermittent nature of wind and solar, stationary energy storage is a requirement for grid buffering to provide electricity during low production times, such as during the night for solar or when the winds are calm. While lithium-ion batteries remain the predominant rechargeable battery technology in terms of energy density and market share, the scarcity of lithium makes it too expensive to be used for stationary scale grid storage. Potassium-ion batteries have recently seen increased interest as a sustainable, domestically available alternative, in terms of its higher operating voltage and its promise with a graphite anode. While many promising electrode materials have been researched for this system, practical engineering considerations such as battery safety and temperature dependent performance remain unexplored. This project will provide fundamental knowledge of the chemical reaction mechanisms and transport occurring in the graphite anode and the electrolyte interface that relates to the understanding of the safety considerations of the performance of the battery to avoid thermal runaways. Electrochemistry education is the other primary goal for this project. The PI has developed creative experimental kits for outreach that are appropriate for pre-college students for experiments and tests that convey key concepts in batteries and electrochemical reactions. The technical goal of this project is to improve the fundamental understanding of potassium-ion (K-ion, K+) battery chemistry to evaluate temperature effects on battery safety and performance. While the mechanism of K+ intercalation into graphite has been investigated through experimental and computational studies, this chemistry has only been studied so far at room temperature. The PIs will study these K-ion batteries at higher temperatures to understand the energetics and kinetics of reactions at the electrode-electrolyte interface that may lead to thermal runaway. Four research tasks are planned: (1) accelerating rate calorimetry (ARC) analysis of K-ion batteries to probe thermal runaway behavior; (2) investigation and characterization of K-ion battery carbon anode solid electrolyte interface (SEI) layer; (3) study the effect of operating temperature on electrochemical performance (e.g. cell ageing) and safety (e.g. K dendrite formation); and (4) test electrode binders and electrolytes, to enhance K-ion battery system safety and performance by manipulation of the SEI layer. Mechanistic studies of thermal runaway will be investigated by ARC analysis of the cycled electrodes, exploring the influence of SEI, state of charge, and electrolyte composition. This project will also involve detailed systematic characterization of the SEI layer for carbon anodes via x-ray photoelectron spectroscopy with depth profiling. Determination of model parameters for SEI growth and K+ diffusion coefficients, will be carried out by the temperature study, via electrochemical characterization methods such as electrochemical impedance spectroscopy (EIS) and galvanostatic intermittent titration technique (GITT). These results will generate deeper understanding of the relationship between SEI composition and battery safety, and the influence of temperature on cell performance, providing further insight into alkali metal-ion battery systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
太阳能和风能等可再生能源的使用越来越多,因此越来越需要研究高效、廉价的储能技术。由于风能和太阳能的间歇性,固定储能是电网缓冲的必要条件,以便在低生产时间提供电力,例如在太阳能的夜间或风平静的时候。虽然锂离子电池在能量密度和市场份额方面仍然是主要的可充电电池技术,但锂的稀缺性使其过于昂贵,无法用于固定规模的电网存储。钾离子电池由于其更高的工作电压和石墨阳极的前景,近年来人们对其作为一种可持续的、国内可用的替代方案越来越感兴趣。虽然已经为该系统研究了许多有前途的电极材料,但实际的工程考虑因素,如电池安全性和温度依赖性能仍未探索。该项目将提供石墨阳极和电解质界面发生的化学反应机制和传输的基本知识,这与理解电池性能的安全考虑有关,以避免热失控。电化学教育是这个项目的另一个主要目标。PI为推广活动开发了创造性的实验包,适合大学预科学生进行实验和测试,传达电池和电化学反应的关键概念。该项目的技术目标是提高对钾离子(K离子,K+)电池化学的基本认识,以评估温度对电池安全性和性能的影响。虽然K+嵌入石墨的机理已经通过实验和计算研究进行了研究,但这种化学反应迄今为止只在室温下进行了研究。pi将在更高温度下研究这些k离子电池,以了解可能导致热失控的电极-电解质界面反应的能量学和动力学。计划开展四项研究任务:(1)加速速率量热法(ARC)分析k离子电池的热失控行为;(2) k离子电池碳阳极固体电解质界面(SEI)层的研究与表征;(3)研究工作温度对电化学性能(如电池老化)和安全性(如K枝晶形成)的影响;(4)测试电极粘结剂和电解质,通过操纵SEI层来提高k离子电池系统的安全性和性能。通过对循环电极进行ARC分析,探讨SEI、电荷状态和电解质组成对热失控机理的影响。该项目还将通过x射线光电子能谱和深度剖面对碳阳极的SEI层进行详细的系统表征。通过电化学表征方法,如电化学阻抗谱(EIS)和恒流间歇滴定技术(git),将通过温度研究来确定SEI生长和K+扩散系数的模型参数。这些结果将加深对SEI成分与电池安全性之间关系的理解,以及温度对电池性能的影响,为碱金属离子电池系统提供进一步的见解。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vilas Pol其他文献
Vilas Pol的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Elucidation of Mechanism of Phonon Thermal Conductivity Reduction by Orbital Fluctuation for Development of Novel Thermal Functional Materials
阐明轨道涨落降低声子导热率的机制,以开发新型热功能材料
- 批准号:
23KJ0893 - 财政年份:2023
- 资助金额:
$ 34.6万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Elucidation of genetic mechanisms regulating thermal adaptation in Reptiles
阐明调节爬行动物热适应的遗传机制
- 批准号:
23KJ0139 - 财政年份:2023
- 资助金额:
$ 34.6万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Creation of homogeneous dense CNT/Cu composites and elucidation of electrical and thermal conduction properties for development of thermally conductive materials
创建均匀致密的 CNT/Cu 复合材料并阐明导热材料开发的导电和导热性能
- 批准号:
22H01521 - 财政年份:2022
- 资助金额:
$ 34.6万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Elucidation of the mechanism for negative thermal expansion materials originating from lattice vibration
阐明晶格振动引起的负热膨胀材料的机理
- 批准号:
22K14471 - 财政年份:2022
- 资助金额:
$ 34.6万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Elucidation of thermal oxidative decomposition of foamed pattern in evaporatibe pattern casting and verification by in-situ observation of molten metal flow
蒸发模型铸造中泡沫模型热氧化分解的阐明和熔融金属流动现场观察的验证
- 批准号:
21K04742 - 财政年份:2021
- 资助金额:
$ 34.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Platform for atomic-order thermal probing and elucidation of wave-like heat conduction
原子级热探测和波状热传导阐明平台
- 批准号:
20H02090 - 财政年份:2020
- 资助金额:
$ 34.6万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Structural Chemical Elucidation of Negative Thermal Expansion Mechanism and Development of New Thermal Expansion Materials
负热膨胀机理的结构化学阐明及新型热膨胀材料的开发
- 批准号:
19K05652 - 财政年份:2019
- 资助金额:
$ 34.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Elucidation of the mechanisms of hypothermia during exercise - Focusing on the thermal sensation during exercise
阐明运动中体温过低的机制——关注运动中的热感觉
- 批准号:
19K24280 - 财政年份:2019
- 资助金额:
$ 34.6万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Elucidation of thermal transport across interface based on heat flux at single-atom scale
基于单原子尺度热通量阐明跨界面热传输
- 批准号:
19K14909 - 财政年份:2019
- 资助金额:
$ 34.6万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Elucidation of the thermal radiation properties of carbon nanotubes for advanced utilization of thermal and photonic energy
阐明碳纳米管的热辐射特性,以实现热能和光子能的高级利用
- 批准号:
19K15384 - 财政年份:2019
- 资助金额:
$ 34.6万 - 项目类别:
Grant-in-Aid for Early-Career Scientists