Using Kinetic Entropy to Understand Dissipation in Reconnection and Turbulence

使用动熵来理解重联和湍流中的耗散

基本信息

  • 批准号:
    1804428
  • 负责人:
  • 金额:
    $ 37.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-08-15 至 2022-07-31
  • 项目状态:
    已结题

项目摘要

This project will contribute to a detailed understanding of a mysterious plasma process called magnetic reconnection, a process behind explosive events in space including solar flares and so-called geomagnetic storms that drive space weather. It occurs where a magnetic field embedded in a superheated (ionized) gas, a plasma, changes directions and rapidly releases large amounts of energy into the plasma. The project will also contribute to understanding of plasma turbulence, where energy injected at large scales cascades down to small dissipation scales. This project will pursue a systematic approach to determining where dissipation occurs in plasmas. The approach is to develop the tools to apply the concept of entropy, known since the late 19th century, to this modern problem where it has been underutilized. This project has the capability to be truly transformative to the field of geospace sciences since it will provide the infrastructure for using entropy as a diagnostic for dissipation which should be useful in many subareas of this field, and will be directly comparable to existing satellite measurements. It fosters education through the support of a graduate student and a postdoctoral researcher.The goal is to perform the first systematic study using kinetic entropy as a diagnostic for dissipation in reconnection and turbulence, and to compare the results with observational data from the Magnetospheric Multiscale space mission. The kinetic diagnostic was recently developed for particle-in-cell (PIC) codes by the research team, so the new diagnostic will be used to assess the numerical dissipation in collisionless PIC codes and implemented into a collisional PIC code that self-consistently contains dissipation. The two will be compared to provide strong insights into where dissipation occurs and what physical mechanism causes it. As needed, the results will be compared directly with a new Vlasov-Maxwell solver that was recently developed by a collaborator at the Los Alamos National Laboratory. The simulation study will be carried out on standard test problems in magnetic reconnection and turbulence. The expected contribution of this work will be a systematic approach to study dissipation in nearly collisionless systems which can broadly be used for plasma science, and a newfound understanding of what causes irreversible dissipation in reconnection and turbulence. This project is being supported as a part of the NSF/DOE Partnership in Basic Plasma Science and Engineering, with a collaborating effort at the Space Science Institute supported by the Department of Energy, Office of Fusion Energy Sciences.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将有助于详细了解一种名为磁重联的神秘等离子体过程,这是太空中爆炸性事件背后的过程,包括太阳耀斑和所谓的地磁风暴,它们驱动着太空天气。当嵌入在过热(电离)气体-等离子体中的磁场改变方向并迅速向等离子体释放大量能量时,就会发生这种情况。该项目还将有助于理解等离子体湍流,在这种湍流中,大尺度注入的能量会向下延伸到小耗散尺度。这个项目将寻求一种系统的方法来确定等离子体中的耗散发生在哪里。方法是开发工具,将自19世纪末就已知晓的熵概念应用于这个现代问题,在这个问题上,它一直没有得到充分利用。该项目有能力对地球空间科学领域产生真正的变革,因为它将提供使用熵作为耗散诊断的基础设施,这在该领域的许多分领域应该是有用的,并将直接与现有的卫星测量相媲美。它通过一名研究生和一名博士后研究人员的支持来促进教育。目标是进行第一次系统研究,使用动熵作为重联和湍流中耗散的诊断,并将结果与磁层多尺度空间任务的观测数据进行比较。运动学诊断是该研究小组最近为粒子在单元(PIC)代码中开发的,因此新的诊断将被用于评估无碰撞PIC代码中的数值耗散,并被实施到自一致包含耗散的碰撞PIC代码中。我们将对两者进行比较,以便更深入地了解耗散发生在哪里,以及是什么物理机制导致了耗散。根据需要,结果将直接与洛斯阿拉莫斯国家实验室的一个合作者最近开发的Vlasov-Maxwell解算器进行比较。模拟研究将对磁重联和湍流中的标准测试问题进行。这项工作的预期贡献将是一种系统的方法来研究几乎没有碰撞的系统中的耗散,可以广泛地用于等离子体科学,以及对重联和湍流中导致不可逆耗散的新的理解。该项目是NSF/美国能源部基础等离子体科学与工程合作伙伴关系的一部分,空间科学研究所的合作努力得到了能源部、聚变能源科学办公室的支持。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(17)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Decomposition of plasma kinetic entropy into position and velocity space and the use of kinetic entropy in particle-in-cell simulations
  • DOI:
    10.1063/1.5098888
  • 发表时间:
    2019-08-01
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    Liang, Haoming;Cassak, Paul A.;Delzanno, Gian Luca
  • 通讯作者:
    Delzanno, Gian Luca
Scaling theory of three-dimensional magnetic reconnection spreading
三维磁重联扩展的标度理论
  • DOI:
    10.1063/5.0052189
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    Arencibia, Milton;Cassak, P. A.;Shay, M. A.;Priest, E. R.
  • 通讯作者:
    Priest, E. R.
Electron-only reconnection and associated electron heating and acceleration in PHASMA
  • DOI:
    10.1063/5.0082633
  • 发表时间:
    2022-03
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    P. Shi;P. Srivastav;M. H. Barbhuiya;P. Cassak;E. Scime;M. Swisdak;C. Beatty;T. Gilbert;R. John;M. Lazo;R. Nirwan;Mitchell Paul;E. Scime;K. Stevenson;T. Steinberger
  • 通讯作者:
    P. Shi;P. Srivastav;M. H. Barbhuiya;P. Cassak;E. Scime;M. Swisdak;C. Beatty;T. Gilbert;R. John;M. Lazo;R. Nirwan;Mitchell Paul;E. Scime;K. Stevenson;T. Steinberger
Kinetic entropy-based measures of distribution function non-Maxwellianity: theory and simulations
  • DOI:
    10.1017/s0022377820001270
  • 发表时间:
    2020-10-01
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Liang, Haoming;Barbhuiya, M. Hasan;Zank, G. P.
  • 通讯作者:
    Zank, G. P.
Scaling of Electron Heating by Magnetization During Reconnection and Applications to Dipolarization Fronts and Super‐Hot Solar Flares
  • DOI:
    10.1029/2022ja030610
  • 发表时间:
    2022-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. H. Barbhuiya;P. Cassak;M. Shay;V. Roytershteyn;M. Swisdak;A. Caspi;A. Runov;Haoming Liang
  • 通讯作者:
    M. H. Barbhuiya;P. Cassak;M. Shay;V. Roytershteyn;M. Swisdak;A. Caspi;A. Runov;Haoming Liang
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Paul Cassak其他文献

Paul Cassak的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Paul Cassak', 18)}}的其他基金

Collaborative Research: Energy Conversion Beyond the First Law of Thermodynamics in Non-Equilibrium Plasmas
合作研究:非平衡等离子体中超越热力学第一定律的能量转换
  • 批准号:
    2308669
  • 财政年份:
    2023
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
FDSS: Faculty Development in a Multifaceted Geospace Program at West Virginia University
FDSS:西弗吉尼亚大学多方面地理空间项目的教师发展
  • 批准号:
    1936251
  • 财政年份:
    2020
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Continuing Grant
GEM: Global versus Local Control of Solar Wind-Magnetospheric Coupling
GEM:太阳风磁层耦合的全局控制与局部控制
  • 批准号:
    1602769
  • 财政年份:
    2017
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: SHINE: Observational and Theoretical Investigation of Solar Flare Ribbon Elongation
合作研究:SHINE:太阳耀斑带伸长的观测和理论研究
  • 批准号:
    1460037
  • 财政年份:
    2015
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Continuing Grant
CAREER: The Effect of Shear Flow on the Scaling of Magnetic Reconnection and Solar Wind-Magnetospheric Coupling
职业:剪切流对磁重联和太阳风磁层耦合尺度的影响
  • 批准号:
    0953463
  • 财政年份:
    2010
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Continuing Grant
The Theory of Magnetic Reconnection Onset: Three Dimensional and Diamagnetic Effects
磁重联起始理论:三维和抗磁效应
  • 批准号:
    0902479
  • 财政年份:
    2009
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant

相似国自然基金

关于Kinetic Cucker-Smale模型及相关耦合模型的适定性研究
  • 批准号:
    12001530
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
带奇性的 Kinetic Cucker-Smale 模型在随机环境中的平均场极限及时间渐近行为研究
  • 批准号:
    11801194
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
Kinetic Monte Carlo 模拟薄膜生长机理的研究
  • 批准号:
    10574059
  • 批准年份:
    2005
  • 资助金额:
    12.0 万元
  • 项目类别:
    面上项目

相似海外基金

RUI: Spectroscopic Characterization and Low Temperature Kinetic Study of Hydrogenated Aromatic Radicals
RUI:氢化芳香族自由基的光谱表征和低温动力学研究
  • 批准号:
    2348916
  • 财政年份:
    2024
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Collaborative Research: On New Directions for the Derivation of Wave Kinetic Equations
合作研究:波动力学方程推导的新方向
  • 批准号:
    2306378
  • 财政年份:
    2024
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Diffusion in Kinetic Equations
动力学方程中的扩散
  • 批准号:
    2350263
  • 财政年份:
    2024
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
CAREER: Well-posedness and long-time behavior of reaction-diffusion and kinetic equations
职业:反应扩散和动力学方程的适定性和长期行为
  • 批准号:
    2337666
  • 财政年份:
    2024
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Continuing Grant
ERI: Experimental Investigation of Compressibility Effects on Turbulent Kinetic Energy Production in Supersonic Flows
ERI:压缩性对超音速流中湍动能产生的影响的实验研究
  • 批准号:
    2347416
  • 财政年份:
    2024
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Collaborative Research: On New Directions for the Derivation of Wave Kinetic Equations
合作研究:波动力学方程推导的新方向
  • 批准号:
    2306379
  • 财政年份:
    2024
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
CDS&E:CAS:Automated Embedded Correlated Wavefunction Theory for Kinetic Modeling in Heterogeneous Catalysis
CDS
  • 批准号:
    2349619
  • 财政年份:
    2024
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Data rich kinetic experimentation for deeper understanding of organic reactions.
数据丰富的动力学实验可更深入地了解有机反应。
  • 批准号:
    2896337
  • 财政年份:
    2023
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Studentship
Electron-only Magnetic Reconnection and Role of Reconnection in Kinetic Plasma Turbulence
仅电子磁重联以及重联在动等离子体湍流中的作用
  • 批准号:
    2325511
  • 财政年份:
    2023
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
RUI: Large Kinetic Isotope Effects as Mechanistic Indicators in Organometallic Chemistry
RUI:大动力学同位素效应作为有机金属化学的机械指标
  • 批准号:
    2247038
  • 财政年份:
    2023
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了