Diffusion in Kinetic Equations
动力学方程中的扩散
基本信息
- 批准号:2350263
- 负责人:
- 金额:$ 36.39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-07-01 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Kinetic equations model the evolution of densities of a large system of interactive particles. They may be used, for example, to study the evolution of a gas or a plasma. The Principal Investigator (PI) is interested in the study of the Boltzmann and Landau equations, for systems of particles that repel each other by power-law potentials. These equations exhibit a regularization effect. An outstanding open problem is to understand if a singularity could emerge from the natural flow of the equation, or if the regularization effects actually dominate the evolution and keep the solutions smooth. The PI mentors graduate students and postdocs in research on the topics of this project.This project aims at developing tools in the analysis of nonlocal equations, parabolic equations and hypoelliptic theory targeted to their applications in kinetic equations. The Boltzmann collision operator acts as a nonlinear diffusive operator of fractional order. It can be studied in the framework of parabolic integro-differential equations. The Landau equation is a model from statistical mechanics used to describe the dynamics of plasma. It can be obtained as a limit case of the Boltzmann equation when grazing collisions prevail. It is a second order, nonlinear, parabolic equation. The project connects different areas of mathematics and mathematical physics, relating recent progress in nonlinear integro-differential equations with the classical Boltzmann equation from statistical mechanics. Kinetic equations involve a nonlinear diffusive operator with respect to velocity, combined with a transport equation with respect to space. The regularization effect in all variables requires ideas from hypoelliptic theory. For the Boltzmann equation in the case of very soft potentials, as well as for the Landau equation with Coulomb potentials, the diffusive part of the equations is not strong enough to prevent the solution from blowing up in theory. In that case, new ideas are needed to properly understand the regularization effects of the equation.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
动力学方程模拟了相互作用的大粒子系统的密度演化。例如,它们可以用来研究气体或等离子体的演化。首席研究员(PI)感兴趣的是研究玻尔兹曼方程和朗道方程,这些方程是通过幂函数势相互排斥的粒子系统。这些方程表现出正则化效应。一个突出的悬而未决的问题是理解方程的自然流动是否会出现奇点,或者正则化效应是否实际上主导了演化并保持解的平稳。PI指导研究生和博士后对这个项目主题的研究。这个项目旨在开发非局部方程、抛物线方程和亚椭圆理论的分析工具,目标是它们在动力学方程中的应用。玻尔兹曼碰撞算符充当分数阶的非线性扩散算符。它可以在抛物型积分-微分方程组的框架下研究。朗道方程是统计力学中用于描述等离子体动力学的模型。它可以作为玻耳兹曼方程的一个极限情况,当掠过碰撞盛行时得到。它是一个二阶、非线性、抛物型方程。该项目将数学和数学物理的不同领域联系起来,将非线性积分-微分方程式的最新进展与统计力学中的经典玻尔兹曼方程联系起来。动力学方程包括一个关于速度的非线性扩散算子,以及一个关于空间的输运方程。所有变量的正则化效应都需要亚椭圆理论的思想。对于极软势情况下的Boltzmann方程,以及具有库仑势的Landau方程,方程的扩散部分在理论上不足以阻止解的爆破。在这种情况下,需要新的想法来正确理解方程的正规化影响。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Luis Silvestre其他文献
Understanding the design of software development teams for academic scenarios
了解学术场景软件开发团队的设计
- DOI:
10.1109/sccc.2015.7416570 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Luis Silvestre;S. Ochoa;Maíra R. Marques - 通讯作者:
Maíra R. Marques
Partial regularity of solutions of fully nonlinear, uniformly elliptic equations
全非线性一致椭圆方程解的部分正则性
- DOI:
10.1002/cpa.21394 - 发表时间:
2011 - 期刊:
- 影响因子:3
- 作者:
S. Armstrong;Luis Silvestre;Charles K. Smart - 通讯作者:
Charles K. Smart
The Landau equation does not blow up
朗道方程不会爆炸
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Nestor Guillen;Luis Silvestre - 通讯作者:
Luis Silvestre
A model-based tool for generating software process model tailoring transformations
用于生成软件流程模型定制转换的基于模型的工具
- DOI:
10.5220/0004715805330540 - 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Luis Silvestre;M. Bastarrica;S. Ochoa - 通讯作者:
S. Ochoa
Automatic Generation of Transformations for Software Process Tailoring
自动生成软件流程定制的转换
- DOI:
10.1007/s11219-022-09585-2 - 发表时间:
2015 - 期刊:
- 影响因子:1.9
- 作者:
Luis Silvestre - 通讯作者:
Luis Silvestre
Luis Silvestre的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Luis Silvestre', 18)}}的其他基金
Regularization Properties of Nonstandard Diffusions
非标准扩散的正则化性质
- 批准号:
1764285 - 财政年份:2018
- 资助金额:
$ 36.39万 - 项目类别:
Continuing Grant
On regularity and singularity of solutions of some nonlinear elliptic equations
一些非线性椭圆方程解的正则性和奇异性
- 批准号:
1362525 - 财政年份:2014
- 资助金额:
$ 36.39万 - 项目类别:
Standard Grant
CAREER: Regularity estimates for elliptic and parabolic equations
职业:椭圆方程和抛物线方程的正则性估计
- 批准号:
1254332 - 财政年份:2013
- 资助金额:
$ 36.39万 - 项目类别:
Continuing Grant
FRG: Collaborative Research : Emerging Issues in the Sciences Involving Non-Standard Diffusion
FRG:合作研究:涉及非标准扩散的科学中的新问题
- 批准号:
1065979 - 财政年份:2011
- 资助金额:
$ 36.39万 - 项目类别:
Continuing Grant
Nonlinear elliptic and parabolic equations with nonlocal effects
具有非局部效应的非线性椭圆和抛物线方程
- 批准号:
1001629 - 财政年份:2010
- 资助金额:
$ 36.39万 - 项目类别:
Standard Grant
Issues in Nonlinear Elliptic Equations and Free Boundary Problems
非线性椭圆方程和自由边界问题中的问题
- 批准号:
0901995 - 财政年份:2008
- 资助金额:
$ 36.39万 - 项目类别:
Standard Grant
Issues in Nonlinear Elliptic Equations and Free Boundary Problems
非线性椭圆方程和自由边界问题中的问题
- 批准号:
0701016 - 财政年份:2007
- 资助金额:
$ 36.39万 - 项目类别:
Standard Grant
相似国自然基金
关于Kinetic Cucker-Smale模型及相关耦合模型的适定性研究
- 批准号:12001530
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
带奇性的 Kinetic Cucker-Smale 模型在随机环境中的平均场极限及时间渐近行为研究
- 批准号:11801194
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
Kinetic Monte Carlo 模拟薄膜生长机理的研究
- 批准号:10574059
- 批准年份:2005
- 资助金额:12.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: On New Directions for the Derivation of Wave Kinetic Equations
合作研究:波动力学方程推导的新方向
- 批准号:
2306378 - 财政年份:2024
- 资助金额:
$ 36.39万 - 项目类别:
Standard Grant
CAREER: Well-posedness and long-time behavior of reaction-diffusion and kinetic equations
职业:反应扩散和动力学方程的适定性和长期行为
- 批准号:
2337666 - 财政年份:2024
- 资助金额:
$ 36.39万 - 项目类别:
Continuing Grant
Collaborative Research: On New Directions for the Derivation of Wave Kinetic Equations
合作研究:波动力学方程推导的新方向
- 批准号:
2306379 - 财政年份:2024
- 资助金额:
$ 36.39万 - 项目类别:
Standard Grant
Forward and Inverse Problems for Topological Insulators and Kinetic Equations
拓扑绝缘体和动力学方程的正逆问题
- 批准号:
2306411 - 财政年份:2023
- 资助金额:
$ 36.39万 - 项目类别:
Standard Grant
Structure-preserving machine learning moment closures for kinetic equations
动力学方程的结构保持机器学习矩闭包
- 批准号:
2309655 - 财政年份:2023
- 资助金额:
$ 36.39万 - 项目类别:
Standard Grant
Interplay Between Data and Partial Differential Equation Models Through the Lens of Kinetic Equations
通过动力学方程的视角观察数据和偏微分方程模型之间的相互作用
- 批准号:
2308440 - 财政年份:2023
- 资助金额:
$ 36.39万 - 项目类别:
Standard Grant
Theory and Application of Kinetic Equations
动力学方程理论与应用
- 批准号:
RGPIN-2018-04331 - 财政年份:2022
- 资助金额:
$ 36.39万 - 项目类别:
Discovery Grants Program - Individual
Development of the method of characteristics for kinetic equations and its application to flows with complicated boundaries
动力学方程特征方法的发展及其在复杂边界流动中的应用
- 批准号:
22K18770 - 财政年份:2022
- 资助金额:
$ 36.39万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Nonlinearity in Reaction-Diffusion and Kinetic Equations
反应扩散和动力学方程中的非线性
- 批准号:
2204615 - 财政年份:2022
- 资助金额:
$ 36.39万 - 项目类别:
Standard Grant
Theory and Application of Kinetic Equations
动力学方程理论与应用
- 批准号:
RGPIN-2018-04331 - 财政年份:2021
- 资助金额:
$ 36.39万 - 项目类别:
Discovery Grants Program - Individual