Kinetic Effects in Nonlinear Plasma Waves

非线性等离子体波的动力学效应

基本信息

  • 批准号:
    1805764
  • 负责人:
  • 金额:
    $ 51万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-09-01 至 2021-08-31
  • 项目状态:
    已结题

项目摘要

This award supports a program of experiments, simulations, and theory on a new type of instability of large amplitude plasma waves - waves in a gas of freely interacting electrically charged particles. The studies will focus on and characterize novel 'kinetic' effects that appear to dominate this instability in waves that propagate with nearly constant wave speed. Such waves are ubiquitous in both naturally-occurring and laboratory plasmas. The new instability mechanism is quite simple and general, and therefore has application to a range of scenarios, including space plasmas and fusion plasmas for power generation.Experiments will be performed on non-neutral plasmas, utilizing an electron trap and an ion trap with a broad range of operating regimes and diagnostics. The simplicity of these systems allows a depth of understanding and a precision of comparison between theory and experiment which is rarely possible for quasi-neutral plasmas in complex geometry. The goal is to verify applicability of the theory, and to stimulate new theory where needed. Recent analysis has found that, surprisingly, standard fluid theory is inadequate to describe parametric instability for near-acoustic Trivelpiece-Gould [TG] plasma waves. A new kinetic instability mechanism, involving a small fraction of plasma that is trapped in the wave troughs, will be studied and applied to understand parametric instabilities observed both in TG waves and in electron-acoustic waves. Experiments and simulations will be used to characterize the particle distribution under the action of the wave, including trapped particles, for direct comparison to theory.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项支持一项关于大振幅等离子体波的新型不稳定性的实验,模拟和理论计划-自由相互作用的带电粒子气体中的波。 这些研究将侧重于和表征新的“动力学”效应,这些效应似乎主导了以几乎恒定的波速传播的波的不稳定性。这种波在自然发生的和实验室等离子体中无处不在。新的不稳定性机制相当简单和普遍,因此适用于一系列情况,包括空间等离子体和聚变等离子体发电,将利用具有广泛操作制度和诊断的电子阱和离子阱对非中性等离子体进行实验。这些系统的简单性允许深入的理解和精确的理论和实验之间的比较,这是很少可能的准中性等离子体在复杂的几何形状。目的是验证理论的适用性,并在需要时激发新的理论。 最近的分析发现,令人惊讶的是,标准流体理论是不足以描述参数不稳定性的近声学Trivelpiece古尔德[TG]等离子体波。一个新的动力学不稳定机制,涉及一小部分被困在波谷的等离子体,将被研究和应用于了解参数不稳定性观察到的TG波和电子声波。实验和模拟将用于描述波浪作用下的颗粒分布,包括捕获的颗粒,以直接与理论进行比较。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Plasma Heating due to Cyclic Diffusion across a Separatrix
由于跨分界线的循环扩散而产生等离子体加热
  • DOI:
    10.1103/physrevlett.123.105002
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Anderegg, F.;Affolter, M.;Dubin, D. H. E.;Driscoll, C. F.
  • 通讯作者:
    Driscoll, C. F.
Adiabatic behavior of an elliptical vortex in a time-dependent external strain flow
  • DOI:
    10.1103/physrevfluids.6.054703
  • 发表时间:
    2021-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    N. Hurst;J. Danielson;D. Dubin;C. Surko
  • 通讯作者:
    N. Hurst;J. Danielson;D. Dubin;C. Surko
Flux-driven algebraic damping of m   =  2 diocotron mode
磁通驱动的代数阻尼 m≤=≤2 双子管模式
  • DOI:
    10.1063/5.0060022
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    Chim, Chi Yung;O'Neil, Thomas M.
  • 通讯作者:
    O'Neil, Thomas M.
Instability of nonlinear Trivelpiece-Gould waves. II. Weakly trapped particles
非线性 Trivelpiece-Gould 波的不稳定性。
  • DOI:
    10.1063/1.5116376
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    Dubin, Daniel H. E.
  • 通讯作者:
    Dubin, Daniel H. E.
Normal modes, rotational inertia, and thermal fluctuations of trapped ion crystals
俘获离子晶体的简正模式、转动惯量和热波动
  • DOI:
    10.1063/5.0021732
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    Dubin, Daniel H.
  • 通讯作者:
    Dubin, Daniel H.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Daniel H.E. Dubin其他文献

Daniel H.E. Dubin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Daniel H.E. Dubin', 18)}}的其他基金

Nonlinear Fluid and Kinetic Effects in Nonneutral Plasmas
非中性等离子体中的非线性流体和动力学效应
  • 批准号:
    2106332
  • 财政年份:
    2021
  • 资助金额:
    $ 51万
  • 项目类别:
    Continuing Grant
Modeling Nuclear Fusion with Strongly Magnetized Non-Neutral Plasmas
用强磁化非中性等离子体模拟核聚变
  • 批准号:
    0613740
  • 财政年份:
    2006
  • 资助金额:
    $ 51万
  • 项目类别:
    Continuing Grant

相似国自然基金

Dynamic Credit Rating with Feedback Effects
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目
水环境中新兴污染物类抗生素效应(Like-Antibiotic Effects,L-AE)作用机制研究
  • 批准号:
    21477024
  • 批准年份:
    2014
  • 资助金额:
    86.0 万元
  • 项目类别:
    面上项目

相似海外基金

Ultra-high precision control of bosonic states in superconducting resonators with second-order nonlinear effects
具有二阶非线性效应的超导谐振器中玻色子态的超高精度控制
  • 批准号:
    22KJ0981
  • 财政年份:
    2023
  • 资助金额:
    $ 51万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Computer modelling of irregular nonlinear surface waves and their effects on offshore wind turbine structures
不规则非线性表面波的计算机建模及其对海上风力发电机结构的影响
  • 批准号:
    2889685
  • 财政年份:
    2023
  • 资助金额:
    $ 51万
  • 项目类别:
    Studentship
On-demand single and entangled photon emitter with quantum optical nonlinear effects
具有量子光学非线性效应的按需单光子和纠缠光子发射器
  • 批准号:
    23H01792
  • 财政年份:
    2023
  • 资助金额:
    $ 51万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of a signal amplification technique using nonlinear optical effects for next-generation gravitational wave detectors
开发利用非线性光学效应的下一代引力波探测器的信号放大技术
  • 批准号:
    23KJ0954
  • 财政年份:
    2023
  • 资助金额:
    $ 51万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Research on nonlinear regression models for estimating treatment effects in clinical cancer research
临床癌症研究中评估治疗效果的非线性回归模型研究
  • 批准号:
    22K11937
  • 财政年份:
    2022
  • 资助金额:
    $ 51万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Selective observation of protein secondary structure by IR super-resolution microscopy based on nonlinear optical effects
基于非线性光学效应的红外超分辨显微镜选择性观察蛋白质二级结构
  • 批准号:
    22H02111
  • 财政年份:
    2022
  • 资助金额:
    $ 51万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Identification, estimation and inference of nonlinear dynamic causal effects in macroeconometrics
宏观计量经济学中非线性动态因果效应的识别、估计和推断
  • 批准号:
    RGPIN-2021-02663
  • 财政年份:
    2022
  • 资助金额:
    $ 51万
  • 项目类别:
    Discovery Grants Program - Individual
Nonlinear and geometric effects in quantum condensed matter systems
量子凝聚态物质系统中的非线性和几何效应
  • 批准号:
    2116767
  • 财政年份:
    2022
  • 资助金额:
    $ 51万
  • 项目类别:
    Continuing Grant
EAGER: Understanding and Leveraging Nonlinear Effects in Acoustic Holograms
EAGER:理解和利用声全息图中的非线性效应
  • 批准号:
    2121933
  • 财政年份:
    2021
  • 资助金额:
    $ 51万
  • 项目类别:
    Standard Grant
Identification, estimation and inference of nonlinear dynamic causal effects in macroeconometrics
宏观计量经济学中非线性动态因果效应的识别、估计和推断
  • 批准号:
    RGPIN-2021-02663
  • 财政年份:
    2021
  • 资助金额:
    $ 51万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了