Coupling Force, Tension and Cell Plasma Membrane Plasticity at the Nanoscale Functional Roles of Caveolin Nanodomains
Caveolin 纳米域的纳米级功能作用中的耦合力、张力和细胞质膜可塑性
基本信息
- 批准号:1806381
- 负责人:
- 金额:$ 42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-15 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Mechanical forces exerted at the cell plasma membrane (PM) direct many important cellular and tissue processes, including cell adhesion, migration and invasiveness. In these processes, the membrane curving protein caveolin 1 (cav1) and the different types of nano-scale domains it forms at the PM are emerging as critical mechano-transducing hubs and tension buffering structures of mammalian cells. Yet, the structural plasticity of cav1 nano-scale domains and their functional coupling to the local mechanical and tension states of the PM are still enigmatic. Consequently, some of the fundamental mechanisms by which the cell membrane adapts to varying forces at the nano-scale remain undefined. This project aims at understanding how cav1 nano-scale domains modulate the PM structure in response to mechanical cues and at defining the core physical principles that govern PM plasticity, maintenance of membrane tension and proper cell response to forces. This project will be implemented through a multidisciplinary approach that integrates super-resolution (SR) microscopy imaging, optical force sensing, engineering of bio-materials for cell mechano-biology, quantitative biophysics and modeling. It will (i) define, quantitatively, the nano-scale organization of cav1 nano-scale domains at the cell PM, (ii) establish their plasticity in response to specific PM forces, (iii) determine how they locally regulate PM tension and (iv) provide physical models of their functions as key PM tension modulators. By its original and multidisciplinary nature, the project engages its participants in highly interdisciplinary research. It will provide them with skills that match the current convergence between cell biology, physics and engineering research. The proposed activities also provide a platform integrating modern technology and cross-pollination science for traditionally underrepresented students at the undergraduate and high school levels, through (i) hands-on experimentation with imaging probes, cell culture and microscopy imaging, (ii) outreach projects and (iii) educational activities. Economically disadvantaged undergraduate and high school students will be recruited via established programs at USC and through outreach to high schools in the Greater Los Angeles Area. In particular, an 8-weeks Summer Internship organized by the PI and Co-PI together with the Mathematics, Engineering, Science Achievement (MESA) program at USC will be offered to high-school students over the course of the project. Experience and knowledge gained by actively taking part in the project will attract this younger generation of scholars to the field of Biophysics and will provide them with strong scientific foundationsThe functional influence of cellular adhesion forces on the 3D plasticity of cav1 nano-domains and their spatial coupling to sub-membranous actin fibers and focal adhesions (FAs) will first be established by correlative 3D SR microscopy, robust spatial correlation analyses and modulation of adhesion geometry for micro-patterned cells. This will provide new understanding of the homeostatic PM functions of cav1 nano-domains as cells respond to specific mechanical constraints. The plasticity of cav1 nano-domains will then be quantitatively correlated with extra- and intracellular picoNewton forces developed along the PM at FAs by combining optical force sensor measurements, SR microscopy and cell micropatterning. This will shed new light on the role of cav1 as a mechano-transducer of extra/intracellular forces at the cell surface. Using quantum dot tracking of curvature- and non-curvature-coupled PM receptors together with 3D SR microscopy of cav1 nano-domains in live cells, the functional roles of cav1 nano-domains as local modulators of PM tension will then be established. This will reveal how they participate in adaptive coupling between local PM tension and cellular force generation on substrates. Finally, physical models describing the plasticity of cav1 nano-domains as a function of local membrane tension will be conceived and tested quantitatively to define some of the core physical principles that govern the adaptation of the cell PM to forces. Beyond offering new optical tools and original methodologies to study the function of PM nano-structures in cells, this work will bring novel insights into the physics of living systems by providing a mechanistic understanding of the physical principles that dictate PM plasticity and adaptation to forces at the nano-scale. This project is being jointly supported by the Physics of Living Systems program in the Division of Physics and the Cellular Dynamics and Function Program in the Division of Molecular and Cellular Biosciences.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
施加在细胞质膜(PM)上的机械力指导许多重要的细胞和组织过程,包括细胞粘附、迁移和侵袭。在这些过程中,膜弯曲蛋白小窝蛋白1(cav 1)和它在PM形成的不同类型的纳米级结构域正在成为哺乳动物细胞的关键机械转导枢纽和张力缓冲结构。然而,cav 1纳米级域的结构塑性和它们与PM的局部机械和张力状态的功能耦合仍然是谜。因此,细胞膜在纳米尺度上适应不同力的一些基本机制仍然不确定。该项目旨在了解cav 1纳米级域如何调节PM结构以响应机械提示,并定义管理PM可塑性,膜张力维持和细胞对力的适当反应的核心物理原理。该项目将通过多学科方法实施,该方法集成了超分辨率(SR)显微成像,光学力传感,细胞机械生物学,定量生物物理学和建模的生物材料工程。它将(i)定量定义细胞PM处cav 1纳米级域的纳米级组织,(ii)建立它们响应特定PM力的可塑性,(iii)确定它们如何局部调节PM张力,以及(iv)提供它们作为关键PM张力调制器的功能的物理模型。由于其原创性和多学科性质,该项目使其参与者参与高度跨学科的研究。它将为他们提供与细胞生物学,物理学和工程研究之间的当前融合相匹配的技能。拟议的活动还通过(一)成像探针、细胞培养和显微成像的实践实验,(二)外联项目和(三)教育活动,为传统上代表性不足的本科生和高中生提供一个融合现代技术和异花授粉科学的平台。经济上处于不利地位的本科生和高中生将通过南加州大学的既定项目和大洛杉矶地区的高中外展来招募。特别是,PI和Co-PI与南加州大学的数学,工程,科学成就(梅萨)计划一起组织的为期8周的暑期实习将在项目期间提供给高中生。通过积极参与该项目所获得的经验和知识将吸引年轻一代的学者进入生物物理学领域,并为他们提供强大的科学基础。细胞粘附力对cav 1纳米结构域的三维可塑性及其与膜下肌动蛋白纤维和粘着斑(FA)的空间耦合的功能影响将首先通过相关的三维SR显微镜建立,稳健的空间相关性分析和微图案化细胞的粘附几何形状的调制。这将为cav 1纳米结构域的稳态PM功能提供新的理解,因为细胞响应特定的机械约束。cav 1纳米域的可塑性,然后将定量相关的额外和细胞内的皮牛顿力开发沿着PM在FA通过结合光学力传感器测量,SR显微镜和细胞微图案。这将揭示cav 1作为细胞表面细胞内外力的机械换能器的作用。使用曲率和非曲率耦合PM受体的量子点跟踪以及活细胞中cav 1纳米域的3D SR显微镜,cav 1纳米域作为PM张力的局部调制器的功能作用将被建立。这将揭示它们如何参与局部PM张力和基底上细胞力产生之间的自适应耦合。最后,物理模型描述的可塑性cav 1纳米域作为局部膜张力的函数将被构思和定量测试,以定义一些核心的物理原则,管理的细胞PM的适应力。除了提供新的光学工具和原创方法来研究细胞中PM纳米结构的功能之外,这项工作还将通过提供对决定PM可塑性和适应力的物理原理的机械理解,为生命系统的物理学带来新的见解。纳米尺度。该项目由物理学系的生命系统物理学项目和分子与细胞生物科学系的细胞动力学和功能项目共同支持。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Mechanics of cup-shaped caveolae
杯状小窝的力学
- DOI:10.1103/physreve.104.l022401
- 发表时间:2021
- 期刊:
- 影响因子:2.4
- 作者:Shrestha, Ahis;Pinaud, Fabien;Haselwandter, Christoph A.
- 通讯作者:Haselwandter, Christoph A.
Mechanochemical coupling of lipid organization and protein function through membrane thickness deformations
通过膜厚度变形实现脂质组织和蛋白质功能的机械化学耦合
- DOI:10.1103/physreve.105.054410
- 发表时间:2022
- 期刊:
- 影响因子:2.4
- 作者:Shrestha, Ahis;Kahraman, Osman;Haselwandter, Christoph A.
- 通讯作者:Haselwandter, Christoph A.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Fabien Pinaud其他文献
Nanoscale Nuclear Envelope Dynamics and Spatial Organization of the Muscular Dystrophy Protein Emerin
- DOI:
10.1016/j.bpj.2019.11.1847 - 发表时间:
2020-02-07 - 期刊:
- 影响因子:
- 作者:
Anthony M. Fernandez;Markville B. Bautista;Fabien Pinaud - 通讯作者:
Fabien Pinaud
Mapping the Emerin Interactome by Apex Proximity Labeling
- DOI:
10.1016/j.bpj.2019.11.1208 - 发表时间:
2020-02-07 - 期刊:
- 影响因子:
- 作者:
Markville B. Bautista;Fabien Pinaud - 通讯作者:
Fabien Pinaud
Microsecond Single Molecule Tracking: Probing Protein Diffusion at High Spatial and Temporal Resolution
- DOI:
10.1016/j.bpj.2010.12.2107 - 发表时间:
2011-02-02 - 期刊:
- 影响因子:
- 作者:
Anna Pezzarossa;Fabien Pinaud;Stefan Semrau;Thomas Schmidt - 通讯作者:
Thomas Schmidt
Single Quantum Dot Trajectory Analysis: Beyond the Single Diffusion Mode Model
- DOI:
10.1016/j.bpj.2009.12.1086 - 发表时间:
2010-01-01 - 期刊:
- 影响因子:
- 作者:
Xavier Michalet;Fabien Pinaud;Shimon Weiss - 通讯作者:
Shimon Weiss
Probing cellular events, one quantum dot at a time
一次一个量子点地探测细胞事件
- DOI:
10.1038/nmeth.1444 - 发表时间:
2010-03-30 - 期刊:
- 影响因子:32.100
- 作者:
Fabien Pinaud;Samuel Clarke;Assa Sittner;Maxime Dahan - 通讯作者:
Maxime Dahan
Fabien Pinaud的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Fabien Pinaud', 18)}}的其他基金
NSF-ANR: DynamoLINC: Dynamics, Nanoscale Organization and Modeling of LINC Under Mechanical Stress
NSF-ANR:DynamoLINC:机械应力下 LINC 的动力学、纳米级组织和建模
- 批准号:
2202087 - 财政年份:2022
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
Activatable Fluorescent Protein/Metal Hybrid Raman Nano-Probes for Biosensing
用于生物传感的可激活荧光蛋白/金属混合拉曼纳米探针
- 批准号:
1406812 - 财政年份:2014
- 资助金额:
$ 42万 - 项目类别:
Continuing Grant
相似国自然基金
High-precision force-reflected bilateral teleoperation of multi-DOF hydraulic robotic manipulators
- 批准号:52111530069
- 批准年份:2021
- 资助金额:10 万元
- 项目类别:国际(地区)合作与交流项目
拉伸力(streching force)作用下大分子构象变化动力学的介观统计理论研究
- 批准号:21373141
- 批准年份:2013
- 资助金额:80.0 万元
- 项目类别:面上项目
相似海外基金
Nuclear force feedback as rheostat for actomyosin tension control
核力反馈作为肌动球蛋白张力控制的变阻器
- 批准号:
MR/Y001125/1 - 财政年份:2024
- 资助金额:
$ 42万 - 项目类别:
Research Grant
Development of a tension sensor probe to Visualize the tensile force subjected to Cells
开发张力传感器探针以可视化细胞受到的张力
- 批准号:
21K19248 - 财政年份:2021
- 资助金额:
$ 42万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Development of a set up for the combined measurement of force, myocyte tension and mitochondrial redox status in rat engineered heart tissue to characterize cardiac hypertro
开发一种联合测量大鼠工程心脏组织中的力、肌细胞张力和线粒体氧化还原状态的装置,以表征心脏肥大
- 批准号:
387561473 - 财政年份:2017
- 资助金额:
$ 42万 - 项目类别:
Research Grants
Effects of forearm position on muscle architecture, length-tension relationship and force-steadiness of the biceps brachii
前臂位置对肱二头肌肌肉结构、长度-张力关系和力-稳定性的影响
- 批准号:
499330-2016 - 财政年份:2016
- 资助金额:
$ 42万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Fingertip force measurement by estimation of finger tendon tension
通过估计手指肌腱张力来测量指尖力
- 批准号:
26630004 - 财政年份:2014
- 资助金额:
$ 42万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Force Transduction and Tension Sensing at Intercellular Junctions
细胞间连接处的力传导和张力感应
- 批准号:
1029871 - 财政年份:2010
- 资助金额:
$ 42万 - 项目类别:
Continuing Grant
Simulation analysis of muscle tension and joint force in patients with hip dysfunction
髋关节功能障碍患者肌张力和关节力的模拟分析
- 批准号:
22700534 - 财政年份:2010
- 资助金额:
$ 42万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Measurements of force working on micro particles under surface tension gradient in liquid by using Atomic Force Microscope
原子力显微镜测量液体表面张力梯度作用下微粒子受力
- 批准号:
15360405 - 财政年份:2003
- 资助金额:
$ 42万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development and evaluation of a micro force sensor for the measurement of in vivo tension
用于测量体内张力的微力传感器的开发和评估
- 批准号:
11558114 - 财政年份:1999
- 资助金额:
$ 42万 - 项目类别:
Grant-in-Aid for Scientific Research (B).
Large Force Tension Element Research Facility
大力拉力元件研究设施
- 批准号:
8506314 - 财政年份:1985
- 资助金额:
$ 42万 - 项目类别:
Standard Grant