Computational Methods for Mixed-Integer Programs in Power Systems

电力系统混合整数程序的计算方法

基本信息

  • 批准号:
    1807260
  • 负责人:
  • 金额:
    $ 36万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-08-01 至 2022-07-31
  • 项目状态:
    已结题

项目摘要

The goal of this project is to design provably efficient computational methods for the optimal operation of power systems and to facilitate their transformation into sustainable systems. Since power systems are large-scale interconnected networks with tens of thousands of devices connected to one another via a physical infrastructure, power operators periodically solve a series of highly complex optimization problems to be able to run these systems. One major power optimization problem is unit commitment (UC), which optimizes the production schedules of the participating generators and is the backbone of the US electricity market with the value exceeding $300B annually. In addition, the emerging problem of optimal transmission switching (OTS) enables a further improvement of power systems operation by co-optimizing the interactions among the resources in the infrastructure. Since these problems are highly nonlinear, well-established optimization algorithms cannot efficiently solve them consistently and suffer from major drawbacks. This project aims to address the pressing need to develop effective techniques that are able to solve much larger power optimization problems on a much shorter time scale with a higher accuracy, compared to the current capabilities. This project leverages the underlying structures of real-world systems to develop customized computational techniques for power optimization problems with strong theoretical and practical guarantees. The focus is on the UC problem (with binary variables at the nodes of the system) and the OTS problem (with binary variables on the links of the system), since other mixed-integer power problems mathematically resemble a combination of UC and OTS. The proposed approach relies on advanced topics in graph theory, conic optimization, valid inequalities, rounding techniques, penalization methods, branch-and-bound techniques, robust optimization, and algebraic geometry. This project will advance the area of nonlinear power optimization, and its findings will significantly impact the energy management systems of power grids leading to major monetary savings and environmental benefits. This project has substantial outreach components with contributions to the programs "Engineering for Kids" and "Engineers without Borders," as well as educational activities to foster undergraduate research, engineering leadership for MS students, graduate curriculum enrichment, and cross fertilization of knowledge among different societies.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目的目标是设计可证明有效的计算方法,用于电力系统的优化运行,并促进其转化为可持续发展的系统。由于电力系统是大规模互联网络,成千上万的设备通过物理基础设施相互连接,电力运营商定期解决一系列高度复杂的优化问题,以便能够运行这些系统。其中一个主要的电力优化问题是机组组合(UC),它优化了参与发电机的生产计划,是美国电力市场的支柱,每年的价值超过3000亿美元。此外,新出现的问题,最佳传输切换(OTS),使进一步改善电力系统的运行,通过共同优化的基础设施中的资源之间的相互作用。由于这些问题是高度非线性的,完善的优化算法不能有效地解决它们一致,并遭受重大缺陷。该项目旨在解决开发有效技术的迫切需求,这些技术能够在更短的时间内以更高的精度解决更大的功率优化问题。该项目利用现实世界系统的底层结构,为电力优化问题开发定制的计算技术,具有强有力的理论和实践保证。重点是UC问题(在系统的节点上具有二进制变量)和OTS问题(在系统的链路上具有二进制变量),因为其他混合整数幂问题在数学上类似于UC和OTS的组合。所提出的方法依赖于图论,圆锥优化,有效的不等式,舍入技术,惩罚方法,分支定界技术,鲁棒优化和代数几何中的高级主题。该项目将推进非线性电力优化领域,其研究结果将对电网的能源管理系统产生重大影响,从而节省大量资金并带来环境效益。该项目有大量的外展组成部分,为“儿童工程”和“无国界工程师”项目做出贡献,以及促进本科生研究,MS学生工程领导力,研究生课程丰富,该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准。

项目成果

期刊论文数量(44)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Monotonicity Between Phase Angles and Power Flow and Its Implications for the Uniqueness of Solutions
相角和潮流之间的单调性及其对解唯一性的影响
Homotopy Method for Finding the Global Solution of Post-contingency Optimal Power Flow
求事后最优潮流全局解的同伦法
Learning of Dynamical Systems under Adversarial Attacks
对抗性攻击下动态系统的学习
A survey on conic relaxations of optimal power flow problem
  • DOI:
    10.1016/j.ejor.2020.01.034
  • 发表时间:
    2020-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Fariba Zohrizadeh;C. Josz;Ming Jin;Ramtin Madani;J. Lavaei;S. Sojoudi
  • 通讯作者:
    Fariba Zohrizadeh;C. Josz;Ming Jin;Ramtin Madani;J. Lavaei;S. Sojoudi
On Sampling Complexity of the Semidefinite Affine Rank Feasibility Problem
  • DOI:
    10.1609/aaai.v33i01.33011568
  • 发表时间:
    2019-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Igor Molybog;J. Lavaei
  • 通讯作者:
    Igor Molybog;J. Lavaei
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Javad Lavaei其他文献

Last-iterate Convergence in No-regret Learning: Games with Reference Effects Under Logit Demand
无悔学习的最后迭代收敛:Logit需求下具有参考效应的博弈
Distributed Optimization and Learning: A Paradigm Shift for Power Systems
分布式优化和学习:电力系统的范式转变
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ahmad S. Al;Elson Cibaku;SangWoo Park;Javad Lavaei;Ming Jin;Cibaku Park Lavaei Jin Al
  • 通讯作者:
    Cibaku Park Lavaei Jin Al
Performance improvement of robust controllers for polynomially uncertain systems
  • DOI:
    10.1016/j.automatica.2009.10.007
  • 发表时间:
    2010-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Javad Lavaei;Amir G. Aghdam
  • 通讯作者:
    Amir G. Aghdam
Exact Recovery Guarantees for Parameterized Non-linear System Identification Problem under Adversarial Attacks
对抗性攻击下参数化非线性系统辨识问题的精确恢复保证
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Haixiang Zhang;Baturalp Yalcin;Javad Lavaei;Eduardo Sontag
  • 通讯作者:
    Eduardo Sontag
Robust controllability and observability degrees of polynomially uncertain systems
  • DOI:
    10.1016/j.automatica.2009.07.017
  • 发表时间:
    2009-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    Somayeh Sojoudi;Javad Lavaei;Amir G. Aghdam
  • 通讯作者:
    Amir G. Aghdam

Javad Lavaei的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Javad Lavaei', 18)}}的其他基金

Collaborative Research: SLES: Safety under Distributional Shift in Learning-Enabled Power Systems
合作研究:SLES:学习型电力系统分配转变下的安全性
  • 批准号:
    2331776
  • 财政年份:
    2023
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Collaborative Research: Improving electric power dispatch to ensure reliable, secure and economic transmission.
合作研究:改善电力调度,确保可靠、安全和经济的传输。
  • 批准号:
    1552096
  • 财政年份:
    2015
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
CAREER: High-Performance Optimization Methods for Power Systems
职业:电力系统的高性能优化方法
  • 批准号:
    1552089
  • 财政年份:
    2015
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Collaborative Research: Improving electric power dispatch to ensure reliable, secure and economic transmission.
合作研究:改善电力调度,确保可靠、安全和经济的传输。
  • 批准号:
    1406865
  • 财政年份:
    2014
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
CAREER: High-Performance Optimization Methods for Power Systems
职业:电力系统的高性能优化方法
  • 批准号:
    1351279
  • 财政年份:
    2014
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant

相似国自然基金

Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Inference and computational methods for mixed models with large or complex data
具有大量或复杂数据的混合模型的推理和计算方法
  • 批准号:
    RGPIN-2016-05883
  • 财政年份:
    2021
  • 资助金额:
    $ 36万
  • 项目类别:
    Discovery Grants Program - Individual
Institute in Critical Quantitative, Computational, and Mixed Methods Training For Underrepresented Scholars
为代表性不足的学者提供关键定量、计算和混合方法培训的学院
  • 批准号:
    2133982
  • 财政年份:
    2021
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Institute in Critical Quantitative, Computational, and Mixed Methods Training For Underrepresented Scholars
为代表性不足的学者提供关键定量、计算和混合方法培训的学院
  • 批准号:
    1937687
  • 财政年份:
    2020
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Inference and computational methods for mixed models with large or complex data
具有大量或复杂数据的混合模型的推理和计算方法
  • 批准号:
    RGPIN-2016-05883
  • 财政年份:
    2020
  • 资助金额:
    $ 36万
  • 项目类别:
    Discovery Grants Program - Individual
A Mixed Methods Design for Computational Genre Stylistics and Unstructured Genres. Towards a Functional History of 19th Century German Novellas.
计算流派文体学和非结构化流派的混合方法设计。
  • 批准号:
    449668519
  • 财政年份:
    2020
  • 资助金额:
    $ 36万
  • 项目类别:
    WBP Fellowship
Institute in Critical Quantitative, Computational, and Mixed Methods Training For Underrepresented Scholars
为代表性不足的学者提供关键定量、计算和混合方法培训的学院
  • 批准号:
    1937490
  • 财政年份:
    2020
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Institute in Critical Quantitative, Computational, and Mixed Methods Training For Underrepresented Scholars
为代表性不足的学者提供关键定量、计算和混合方法培训的学院
  • 批准号:
    1937391
  • 财政年份:
    2020
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Novel Computational Methods for Imperfectly-Mixed Chemical Reactions
不完全混合化学反应的新计算方法
  • 批准号:
    1911145
  • 财政年份:
    2019
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Inference and computational methods for mixed models with large or complex data
具有大量或复杂数据的混合模型的推理和计算方法
  • 批准号:
    RGPIN-2016-05883
  • 财政年份:
    2019
  • 资助金额:
    $ 36万
  • 项目类别:
    Discovery Grants Program - Individual
Research: A Mixed-Methods Approach to Characterizing Engineering Students' Computational Habits of Mind
研究:表征工科学生计算思维习惯的混合方法
  • 批准号:
    1826099
  • 财政年份:
    2018
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了