Collaborative Research: High Resolution Acoustic Manipulation of Single Cells with Integrated MEMS based Phased Arrays
合作研究:利用集成 MEMS 相控阵对单细胞进行高分辨率声学操控
基本信息
- 批准号:1807601
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-01 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Cells are fundamental building blocks of life. The ability to manipulate single cells individually in a liquid environment with high precision will enable many fundamental biological studies on cell-to-cell and cell-to-environment interactions that could not be achieved before. Such discoveries will provide key insights into the effect of the environment on cellular structure, function, and signaling, and would have wide applications across multiple disciplines in life sciences, agriculture and medicine. Due to their small size and also soft nature, it is extremely difficult to handle single cells with a physical device, such as mechanical tweezers, without causing damage to the delicate subcellular structures. Alternatively, focused electrical fields, laser beams, and ultrasound waves can be utilized to generate microscale forces at the focal point, serving as virtual tweezers for single cell manipulation. Among them, the 'acoustic tweezers' are the most compatible with the cells due to cell's higher tolerance of sound pressure over electrical field and laser illumination. However, unlike the laser beams that can be easily focused and steered with a glass lens and a rotating mirror, agile focusing and steering of ultrasound waves requires complex and expensive transducer arrays and control electronics. This situation has prevented the wide use of 'acoustic tweezers' in single cell manipulation. The proposed work is to develop an acoustic phased array to enable acoustic steering and focusing of ultrasound beams for their applications in high-resolution acoustic manipulation of single cells.Among all existing single cell manipulation techniques, the ultrasound phased array has the greatest potential due to its unique ability to achieve electronic beam forming (without physically scanning the transducer(s)). Using this unique beam forming technique to focus ultrasonic radiation at precise locations presents unprecedented manipulation capabilities compared with other methods. However, in current ultrasound phased array systems, multiple channels of ultrasound signals are first converted into electronic ones with an array of transducer elements. The phase shift is then accomplished in the electronic domain. As the operation frequency and the number of the channels increases, the phased array system becomes increasingly complex, bulky, power-consuming and costly. Therefore, current acoustic phased arrays are not suitable for on-chip microfluidic platforms for single cell manipulation. To address this issue, this research aims to develop a new micromachined ultrasound phased array. It will consist of an array of micromachined silicon acoustic delay lines with tunable delay lengths to create the desired phase shift for multiple ultrasound signals without the need for electronic conversion. This enables ultrasound beam forming with a single-element transducer and a single-channel ultrasound transceiver. With advanced micromachining processes, it can be readily fabricated and even integrated together with microfluidic components onto the same substrate for single-chip operation. To achieve the research objective, the following three research tasks will be accomplished: 1) Conduct acoustic and electromechanical design and optimization of the acoustic phase shifter; 2) Develop an on-chip microfabrication process to achieve multi-channel integration; and 3) Demonstrate dexterous acoustic manipulation and positioning of single cells using the ultrasound phased array. This multidisciplinary research is expected to provide unique learning and training opportunities for both graduate/undergraduate students. Students in grades 7-12 will be involved through Engineering Summer Camps and Open House activities. Research results will be incorporated into the PI's course development at all levels. They will also be disseminated through publications, outreach activities, invited talks, and a project website.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
细胞是生命的基本组成部分。在液体环境中以高精度单独操纵单细胞的能力将使以前无法实现的许多关于细胞与细胞和细胞与环境相互作用的基础生物学研究成为可能。这些发现将为环境对细胞结构,功能和信号传导的影响提供关键见解,并将在生命科学,农业和医学的多个学科中具有广泛的应用。由于它们的小尺寸和柔软的性质,很难用物理设备(如机械镊子)处理单细胞,而不对微妙的亚细胞结构造成损害。或者,可以利用聚焦电场、激光束和超声波在焦点处产生微尺度力,作为用于单细胞操作的虚拟镊子。其中,“声镊”与细胞的兼容性最好,因为细胞对电场和激光照射的声压有更高的耐受性。然而,与可以容易地用玻璃透镜和旋转镜聚焦和操纵的激光束不同,超声波的敏捷聚焦和操纵需要复杂且昂贵的换能器阵列和控制电子器件。这种情况阻碍了“声镊”在单细胞操作中的广泛使用。本论文的主要工作是开发一种超声相控阵技术,使超声束能够在高分辨率的单细胞声学操纵中实现声学转向和聚焦,在现有的单细胞操纵技术中,超声相控阵技术由于其独特的电子波束形成能力(无需物理扫描换能器)而具有最大的潜力。与其他方法相比,使用这种独特的波束形成技术将超声波辐射聚焦在精确的位置提供了前所未有的操纵能力。然而,在当前的超声相控阵系统中,超声信号的多个通道首先利用换能器元件的阵列被转换成电子通道。然后在电子域中完成相移。随着工作频率和通道数的增加,相控阵系统变得越来越复杂、体积庞大、功耗高和成本高。因此,目前的声学相控阵不适合用于单细胞操作的芯片上微流体平台。为了解决这个问题,本研究旨在开发一种新的微机械超声相控阵。它将由一个微加工硅声学延迟线阵列组成,具有可调延迟长度,可为多个超声信号产生所需的相移,而无需电子转换。这使得能够利用单元件换能器和单通道超声收发器进行超声波束形成。通过先进的微机械加工工艺,它可以很容易地制造,甚至与微流体组件一起集成到同一衬底上,用于单芯片操作。为达成研究目标,本研究将完成以下三项研究工作:1)进行声学移相器的声学和机电设计与优化; 2)开发一种片上微加工工艺,以实现多通道集成; 3)使用超声相控阵演示灵巧的声学操纵和单细胞定位。这项多学科研究预计将为研究生/本科生提供独特的学习和培训机会。7-12年级的学生将参加工程夏令营和开放日活动。研究结果将被纳入PI的各级课程开发。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(35)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A sound approach to advancing healthcare systems: the future of biomedical acoustics.
- DOI:10.1038/s41467-022-31014-y
- 发表时间:2022-06-16
- 期刊:
- 影响因子:16.6
- 作者:
- 通讯作者:
Acoustofluidic methods in cell analysis.
- DOI:10.1016/j.trac.2019.06.034
- 发表时间:2019-07
- 期刊:
- 影响因子:0
- 作者:Yuliang Xie;Hunter Bachman;T. Huang
- 通讯作者:Yuliang Xie;Hunter Bachman;T. Huang
Microfluidic Isolation and Enrichment of Nanoparticles.
- DOI:10.1021/acsnano.0c06336
- 发表时间:2020-12-22
- 期刊:
- 影响因子:17.1
- 作者:Xie Y;Rufo J;Zhong R;Rich J;Li P;Leong KW;Huang TJ
- 通讯作者:Huang TJ
Addressing the global challenges of COVID-19 and other pulmonary diseases with microfluidic technology.
- DOI:10.1016/j.eng.2022.01.003
- 发表时间:2022-01-27
- 期刊:
- 影响因子:0
- 作者:Xie Y;Becker R;Scott M;Bean K;Huang TJ
- 通讯作者:Huang TJ
Acoustofluidic centrifuge for nanoparticle enrichment and separation.
- DOI:10.1126/sciadv.abc0467
- 发表时间:2021-01
- 期刊:
- 影响因子:13.6
- 作者:Gu Y;Chen C;Mao Z;Bachman H;Becker R;Rufo J;Wang Z;Zhang P;Mai J;Yang S;Zhang J;Zhao S;Ouyang Y;Wong DTW;Sadovsky Y;Huang TJ
- 通讯作者:Huang TJ
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tony Jun Huang其他文献
Electrocarving during Electrodeposition Growth
电镀生长过程中的电雕
- DOI:
10.1002/adma.201805686 - 发表时间:
2018-10 - 期刊:
- 影响因子:29.4
- 作者:
Yanling Wang;Liyan Zhao;Yu Zhao;William Yi Wang;Yongfeng Liu;Changdong Gu;Jinshan Li;Guigen Zhang;Tony Jun Huang;Shikuan Yang - 通讯作者:
Shikuan Yang
Electrocarving during Electrodeposition Growth
- DOI:
DOI: 10.1002/adma.201805686 - 发表时间:
2018 - 期刊:
- 影响因子:
- 作者:
Yanling Wang;Liyan Zhao;Yu Zhao;William Yi Wang;Yongfeng Liu;Changdong Gu;Jinshan Li;Guigen Zhang;Tony Jun Huang;Shikuan Yang - 通讯作者:
Shikuan Yang
Bioinspired hydrophobic pseudo-hydrogel for programmable shape-morphing
用于可编程形状变形的仿生疏水伪水凝胶
- DOI:
10.1038/s41467-025-56291-1 - 发表时间:
2025-01-21 - 期刊:
- 影响因子:15.700
- 作者:
Zhigang Wang;Haotian Hu;Zefan Chai;Yuhang Hu;Siyuan Wang;Cheng Zhang;Chunjie Yan;Jun Wang;Wesley Coll;Tony Jun Huang;Xianchen Xu;Heng Deng - 通讯作者:
Heng Deng
Biocompatible, adhesive and stable GelMAc/PVAMA/MPDA@Cur hydrogels regulate immune response to improve endoscopic submucosal dissection-induced gastric ulcer healing in vivo
生物相容性、粘合性和稳定性的 GelMAc/PVAMA/MPDA@Cur 水凝胶调节免疫反应,改善内镜粘膜下剥离诱导的胃溃疡体内愈合
- DOI:
10.1016/j.apmt.2022.101539 - 发表时间:
2022-08 - 期刊:
- 影响因子:8.3
- 作者:
Xu Zhang;Ye He;Xuan Li;Chuanchuan Lin;Zhang Yuan;Liangliang Dai;Feng Ma;Yi Lv;Tony Jun Huang;Mudan Ren;Kaiyong Cai;Shuixiang He - 通讯作者:
Shuixiang He
Automating life science labs at the single-cell level through precise ultrasonic liquid sample ejection: PULSE
通过精确的超声液体样品喷射在单细胞水平实现生命科学实验室的自动化:PULSE
- DOI:
10.1038/s41378-024-00798-y - 发表时间:
2024-11-20 - 期刊:
- 影响因子:9.900
- 作者:
Peiran Zhang;Zhenhua Tian;Ke Jin;Kaichun Yang;Wesley Collyer;Joseph Rufo;Neil Upreti;Xianjun Dong;Luke P. Lee;Tony Jun Huang - 通讯作者:
Tony Jun Huang
Tony Jun Huang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tony Jun Huang', 18)}}的其他基金
Collaborative Research: Acoustic Holography Enabled Additive Manufacturing of High-resolution Multifunctional Composites
合作研究:声全息技术支持高分辨率多功能复合材料的增材制造
- 批准号:
2104295 - 财政年份:2021
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Student Poster Symposium at ASME Society-Wide Micro and Nano Technology Forum, Houston, Texas, November 9-15, 2012
ASME 全社会微纳米技术论坛学生海报研讨会,德克萨斯州休斯顿,2012 年 11 月 9 日至 15 日
- 批准号:
1248221 - 财政年份:2012
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Student Poster Symposium at ASME Society-Wide Micro and Nano Technology Forum, Denver, Colorado, November 11, 2011 - November 17, 2011
ASME全社会微纳米技术论坛学生海报研讨会,科罗拉多州丹佛,2011年11月11日 - 2011年11月17日
- 批准号:
1160568 - 财政年份:2011
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
EAGER: Exploring High-Resolution, Energy-Efficient, Full-Color Electronic Paper Displays (E-PADs) Driven by Rotary Molecular Motors
EAGER:探索由旋转分子电机驱动的高分辨率、节能、全彩电子纸显示器 (E-PAD)
- 批准号:
1102206 - 财政年份:2011
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Ultra-Small, All-Optical Plasmonic Switches Based on Light-Driven Molecular Shuttles
基于光驱动分子梭的超小型全光等离子体开关
- 批准号:
0801922 - 财政年份:2008
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Opto-Fluidic Hybrid System for Miniaturized Flow Cytometry
用于小型流式细胞术的光流控混合系统
- 批准号:
0824183 - 财政年份:2008
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Constraining next generation Cascadia earthquake and tsunami hazard scenarios through integration of high-resolution field data and geophysical models
合作研究:通过集成高分辨率现场数据和地球物理模型来限制下一代卡斯卡迪亚地震和海啸灾害情景
- 批准号:
2325311 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: Planning: FIRE-PLAN:High-Spatiotemporal-Resolution Sensing and Digital Twin to Advance Wildland Fire Science
合作研究:规划:FIRE-PLAN:高时空分辨率传感和数字孪生,以推进荒地火灾科学
- 批准号:
2335568 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: Planning: FIRE-PLAN:High-Spatiotemporal-Resolution Sensing and Digital Twin to Advance Wildland Fire Science
合作研究:规划:FIRE-PLAN:高时空分辨率传感和数字孪生,以推进荒地火灾科学
- 批准号:
2335569 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: Connecting the Past, Present, and Future Climate of the Lake Victoria Basin using High-Resolution Coupled Modeling
合作研究:使用高分辨率耦合建模连接维多利亚湖盆地的过去、现在和未来气候
- 批准号:
2323649 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: Constraining next generation Cascadia earthquake and tsunami hazard scenarios through integration of high-resolution field data and geophysical models
合作研究:通过集成高分辨率现场数据和地球物理模型来限制下一代卡斯卡迪亚地震和海啸灾害情景
- 批准号:
2325312 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: Planning: FIRE-PLAN:High-Spatiotemporal-Resolution Sensing and Digital Twin to Advance Wildland Fire Science
合作研究:规划:FIRE-PLAN:高时空分辨率传感和数字孪生,以推进荒地火灾科学
- 批准号:
2335570 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: GreenFjord-FIBER, Observing the Ice-Ocean Interface with Exceptional Resolution
合作研究:GreenFjord-FIBER,以卓越的分辨率观测冰海界面
- 批准号:
2338503 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: Connecting the Past, Present, and Future Climate of the Lake Victoria Basin using High-Resolution Coupled Modeling
合作研究:使用高分辨率耦合建模连接维多利亚湖盆地的过去、现在和未来气候
- 批准号:
2323648 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: Four-Dimensional (4D) Investigation of Tropical Waves Using High-Resolution GNSS Radio Occultation from Strateole2 Balloons
合作研究:利用 Strateole2 气球的高分辨率 GNSS 无线电掩星对热带波进行四维 (4D) 研究
- 批准号:
2402729 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Collaborative Research: GreenFjord-FIBER, Observing the Ice-Ocean Interface with Exceptional Resolution
合作研究:GreenFjord-FIBER,以卓越的分辨率观测冰海界面
- 批准号:
2338502 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant