SemiSynBio: Collaborative Research: DNA-based Electrically Readable Memories
SemiSynBio:合作研究:基于 DNA 的电可读存储器
基本信息
- 批准号:1807568
- 负责人:
- 金额:$ 40.12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-15 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
For decades engineers have aimed to develop a universal memory technology that was low cost, reliable, high density, and non-volatile. Ideally, this technology could be quickly written, read, or erased, and would last indefinitely in any defined state. However, current technologies have limited lifetimes, are often arduous to write, consume significant amounts of power, and are not capable of sustaining the current global data growth. Biological systems on the other hand, solved this problem billions of years ago using deoxyribonucleic acids (DNA) coupled with enzymatic methods for reading, writing, and erasing the data. In fact, the average human writes 40 exabytes of data each day while consuming comparatively little energy. Moreover, this data can be stored for hundreds or thousands of years. Thus, DNA represents a unique and interesting platform for developing memory technologies for the next generation of electronic devices. However, in order to leverage its phenomenal storage capabilities and become a viable memory technology contender, a number of important technical and fundamental hurdles must be examined and overcome. As an initial step toward this goal, this proposal aims to create a DNA-based Read-Only Memory (ROM) that can be patterned, placed, and programmed as desired, can be read electrically, and is capable of interfacing with conventional semiconductor electronics for long-term data storage and retrieval. To achieve this goal, we have established a collaborative, multidisciplinary team working at the nexus of biological systems electrical and computer engineering and charge transport physics. This Team has expertise in the control and assembly of DNA nanostructures, nano- and molecular electronic systems, and the theory and modeling of nanoscale electronic devices. Together, this team will work with students and junior researchers to understand and control the charge transport properties of DNA-based nanostructures, to assemble DNA-based memory devices and circuits, to develop tools for modeling and programming these systems, and to train a new generation of scientists and engineers capable of working at the interface between biology and nano/electrical engineering. Graduate students involved in this project, will obtain interdisciplinary training involving electrical engineering, device physics, chemistry, biochemistry, and material science. In addition, this transdisciplinary research project is also integrated with an outreach program aimed at expanding the enrollment of under-represented minorities and female students in STEM fields, providing research experience for undergraduate students, and introducing K-12 students to cutting edge science and engineering problems. To fully harness the advantages of DNA for a general memory platform within semiconductor-based systems, it must be possible to access and read information from it electronically. To develop this translational capability, several technological and fundamental advances are required. It is the goal of this project to develop methods for creating an electrically readable DNA-based memory system. Specifically, this proposal aims: i) to optimize and control the charge transport properties of DNA-nanowires grown using bottom-up self-assembly techniques using a combination of molecular and ionic dopants, and templated growth of inorganic structures; ii) to develop design rules for creating DNA-based multi-level memory cells by examining the effects of sequence, structure, and length on the transport properties; iii) to combine this knowledge to develop DNA-based cross-wire (X-wire) read-only memory systems; iv) to develop predictive transport models to simulate the functionality of this memory architecture; and v) to develop Computer-Aided Design (CAD) tools that can be used to program the self-assembly of large-scale memory architectures. The success of this approach will create translational capabilities for carbon-based electronics, memory technologies, and DNA-based nano-assemblies, and the breadth of this project will result in new knowledge in a variety of realms. It will: i) enhance our fundamental understanding of the inherent charge transport properties of DNA; ii) provide insights into how to chemically control these properties to achieve the desired electrical responses; iii) provide new insights into how to scale-up the self-assembly of DNA nanostructures; iv) aid the development of new CAD tools for modeling and controlling the assembly and addressability of DNA-based memories; v) provide foundational information about how to interface biological materials with conventional semiconductor technologies; vi) advance the utility of DNA self-assembly to a novel manufacturing platform for nanoscale electronic materials; vii) enable new methodologies for modeling transport in these bottom-up hybrid systems; and viii) provide information about novel memory architectures for next-generation computation. The knowledge developed in these areas will enable the design of carbon-based, nanoscale electronic devices with desired functionality from the bottom-up. And more generally, the success of this project will provide a broad, systematic framework that can be followed to develop unique electronic device paradigms for nanoscale electronic materials.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
几十年来,工程师们一直致力于开发一种低成本、可靠、高密度和非易失性的通用存储技术。理想情况下,这种技术可以快速写入、读取或擦除,并且可以在任何定义的状态下无限期地持续下去。然而,当前的技术寿命有限,通常编写困难,消耗大量的功率,并且无法维持当前的全球数据增长。另一方面,生物系统在数十亿年前就解决了这个问题,使用脱氧核糖核酸(DNA)和酶的方法来读取、写入和擦除数据。事实上,人类平均每天写入40艾字节的数据,而消耗的能量相对较少。此外,这些数据可以保存数百年或数千年。因此,DNA代表了为下一代电子设备开发存储技术的独特而有趣的平台。然而,为了利用其惊人的存储能力并成为一个可行的存储技术竞争者,必须检查和克服许多重要的技术和基本障碍。作为实现这一目标的第一步,该提案旨在创造一种基于dna的只读存储器(ROM),该存储器可以按需要进行图案、放置和编程,可以电读取,并且能够与传统的半导体电子接口进行长期数据存储和检索。为了实现这一目标,我们建立了一个协作的多学科团队,致力于生物系统、电气和计算机工程以及电荷输运物理的联系。该团队在DNA纳米结构的控制和组装,纳米和分子电子系统以及纳米级电子设备的理论和建模方面具有专业知识。该团队将与学生和初级研究人员一起了解和控制基于dna的纳米结构的电荷传输特性,组装基于dna的存储设备和电路,开发用于建模和编程这些系统的工具,并培养能够在生物学和纳米/电子工程之间工作的新一代科学家和工程师。参与该项目的研究生将获得涉及电气工程,器件物理,化学,生物化学和材料科学的跨学科培训。此外,这一跨学科研究项目还与一项外展计划相结合,旨在扩大STEM领域少数族裔和女性学生的入学率,为本科生提供研究经验,并向K-12学生介绍前沿科学和工程问题。为了在基于半导体的系统中充分利用DNA作为通用存储平台的优势,必须能够以电子方式访问和读取DNA中的信息。要发展这种转化能力,需要若干技术和基础上的进步。这个项目的目标是开发一种方法来创建一个电可读的基于dna的存储系统。具体来说,本研究的目标是:i)优化和控制dna纳米线的电荷传输特性,这些dna纳米线采用自下而上的自组装技术,使用分子和离子掺杂剂的组合,以及无机结构的模板生长;ii)通过检查序列、结构和长度对传输特性的影响,为创建基于dna的多层次记忆细胞制定设计规则;iii)结合这些知识开发基于dna的交叉线(x线)只读存储系统;Iv)发展预测传输模型,以模拟此记忆体架构的功能;v)开发计算机辅助设计(CAD)工具,可用于对大规模存储体系结构的自组装进行编程。这种方法的成功将为碳基电子、存储技术和基于dna的纳米组件创造转化能力,并且该项目的广度将在各个领域产生新知识。它将:i)增强我们对DNA固有电荷传输特性的基本理解;Ii)提供如何通过化学方法控制这些特性以实现所需的电响应的见解;iii)为如何扩大DNA纳米结构的自组装提供新的见解;iv)协助开发新的CAD工具,用于建模和控制dna存储器的组装和可寻址性;V)提供关于如何将生物材料与传统半导体技术相结合的基础信息;vi)将DNA自组装技术应用于纳米级电子材料的新型制造平台;Vii)启用在这些自下而上的混合系统中建模传输的新方法;viii)提供关于下一代计算的新型存储体系结构的信息。在这些领域开发的知识将使自下而上设计具有所需功能的碳基纳米级电子器件成为可能。更广泛地说,这个项目的成功将为开发纳米级电子材料的独特电子器件范例提供一个广泛的、系统的框架。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Tunable DNA Origami Motors Translocate Ballistically Over μm Distances at nm/s Speeds
- DOI:10.1002/anie.201916281
- 发表时间:2020-04-01
- 期刊:
- 影响因子:16.6
- 作者:Bazrafshan, Alisina;Meyer, Travis A.;Salaita, Khalid
- 通讯作者:Salaita, Khalid
DNA‐Guided Assembly of Molecules, Materials, and Cells
- DOI:10.1002/aisy.201900101
- 发表时间:2019-12
- 期刊:
- 影响因子:7.4
- 作者:Donglei Yang;Chunyan Zhou;Fei Gao;Pengfei Wang;Yonggang Ke
- 通讯作者:Donglei Yang;Chunyan Zhou;Fei Gao;Pengfei Wang;Yonggang Ke
DNA Origami Guided Self-Assembly of Plasmonic Polymers with Robust Long-Range Plasmonic Resonance
- DOI:10.1021/acs.nanolett.0c04055
- 发表时间:2020-12-09
- 期刊:
- 影响因子:10.8
- 作者:Wang, Pengfei;Huh, Ji-Hyeok;Ke, Yonggang
- 通讯作者:Ke, Yonggang
Dynamic DNA Structures
动态DNA结构
- DOI:10.1002/smll.201900228
- 发表时间:2019
- 期刊:
- 影响因子:13.3
- 作者:Zhang Yingwei;Pan Victor;Li Xue;Yang Xueqin;Li Haofei;Wang Pengfei;Ke Yonggang
- 通讯作者:Ke Yonggang
Programming Dynamic Assembly of Viral Proteins with DNA Origami
用 DNA Origami 编程病毒蛋白的动态组装
- DOI:10.1021/jacs.9b13773
- 发表时间:2020
- 期刊:
- 影响因子:15
- 作者:Kun Zhou;Yihao Zhou;Victor Pan;Qiangbin Wang;Yonggang Ke
- 通讯作者:Yonggang Ke
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yonggang Ke其他文献
Super-resolved Measurement of Piconewton Receptor Forces via Tension-PAINT
- DOI:
10.1016/j.bpj.2019.11.1622 - 发表时间:
2020-02-07 - 期刊:
- 影响因子:
- 作者:
Joshua M. Brockman;Hanquan Su;Alexa L. Mattheyses;Yonggang Ke;Khalid Salaita - 通讯作者:
Khalid Salaita
Mechano-Cas12a Assisted Tension Sensor (MCATS) for Massively Amplified Cell Traction Force Measurements
Mechano-Cas12a 辅助张力传感器 (MCATS) 用于大规模放大的电池牵引力测量
- DOI:
10.1101/2022.10.26.513907 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Yuxin Duan;F. Szlam;Yuesong Hu;Wenchun Chen;Renhao Li;Yonggang Ke;Roman Sniecinski;K. Salaita - 通讯作者:
K. Salaita
Modulating transformation of DNA origami nanoarray via sequence design
通过序列设计调节 DNA 折纸纳米阵列的转变
- DOI:
10.1038/s41467-025-61421-w - 发表时间:
2025-07-01 - 期刊:
- 影响因子:15.700
- 作者:
Dongfang Wang;Fiona Cole;Martina Pfeiffer;Mengting Cao;Tim Schröder;Philip Tinnefeld;Yonggang Ke - 通讯作者:
Yonggang Ke
Synthesis and characterization of self-assembled DNA nanostructures.
自组装 DNA 纳米结构的合成和表征。
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Chenxiang Lin;Yonggang Ke;R. Chhabra;J. Sharma;Yan Liu;Hao Yan - 通讯作者:
Hao Yan
Complex DNA Brick Assembly.
复杂的 DNA 砖组装。
- DOI:
10.1007/978-1-4939-6454-3_4 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Luvena L. Ong;Yonggang Ke - 通讯作者:
Yonggang Ke
Yonggang Ke的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yonggang Ke', 18)}}的其他基金
CAREER: Control Information Transfer in Complex DNA Structures
职业:控制复杂 DNA 结构中的信息传递
- 批准号:
1654485 - 财政年份:2017
- 资助金额:
$ 40.12万 - 项目类别:
Continuing Grant
相似海外基金
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
- 批准号:
2348998 - 财政年份:2025
- 资助金额:
$ 40.12万 - 项目类别:
Standard Grant
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
- 批准号:
2348999 - 财政年份:2025
- 资助金额:
$ 40.12万 - 项目类别:
Standard Grant
Collaborative Research: Investigating Southern Ocean Sea Surface Temperatures and Freshening during the Late Pliocene and Pleistocene along the Antarctic Margin
合作研究:调查上新世晚期和更新世沿南极边缘的南大洋海面温度和新鲜度
- 批准号:
2313120 - 财政年份:2024
- 资助金额:
$ 40.12万 - 项目类别:
Standard Grant
Collaborative Research: NSFDEB-NERC: Warming's silver lining? Thermal compensation at multiple levels of organization may promote stream ecosystem stability in response to drought
合作研究:NSFDEB-NERC:变暖的一线希望?
- 批准号:
2312706 - 财政年份:2024
- 资助金额:
$ 40.12万 - 项目类别:
Standard Grant
Collaborative Research: Chain Transform Fault: Understanding the dynamic behavior of a slow-slipping oceanic transform system
合作研究:链变换断层:了解慢滑海洋变换系统的动态行为
- 批准号:
2318855 - 财政年份:2024
- 资助金额:
$ 40.12万 - 项目类别:
Continuing Grant
Collaborative Research: Understanding Environmental and Ecological Controls on Carbon Export and Flux Attenuation near Bermuda
合作研究:了解百慕大附近碳输出和通量衰减的环境和生态控制
- 批准号:
2318940 - 财政年份:2024
- 资助金额:
$ 40.12万 - 项目类别:
Standard Grant
Collaborative Research: Deciphering the mechanisms of marine nitrous oxide cycling using stable isotopes, molecular markers and in situ rates
合作研究:利用稳定同位素、分子标记和原位速率破译海洋一氧化二氮循环机制
- 批准号:
2319097 - 财政年份:2024
- 资助金额:
$ 40.12万 - 项目类别:
Standard Grant
Collaborative Research: URoL:ASC: Determining the relationship between genes and ecosystem processes to improve biogeochemical models for nutrient management
合作研究:URoL:ASC:确定基因与生态系统过程之间的关系,以改进营养管理的生物地球化学模型
- 批准号:
2319123 - 财政年份:2024
- 资助金额:
$ 40.12万 - 项目类别:
Standard Grant
Collaborative Research: Subduction Megathrust Rheology: The Combined Roles of On- and Off-Fault Processes in Controlling Fault Slip Behavior
合作研究:俯冲巨型逆断层流变学:断层上和断层外过程在控制断层滑动行为中的综合作用
- 批准号:
2319848 - 财政年份:2024
- 资助金额:
$ 40.12万 - 项目类别:
Standard Grant
Collaborative Research: CyberTraining: Pilot: PowerCyber: Computational Training for Power Engineering Researchers
协作研究:CyberTraining:试点:PowerCyber:电力工程研究人员的计算培训
- 批准号:
2319895 - 财政年份:2024
- 资助金额:
$ 40.12万 - 项目类别:
Standard Grant