Electrical Injection Nanolasers Based on 2D Monolayer Gain Material

基于二维单层增益材料的电注入纳米激光器

基本信息

  • 批准号:
    1807644
  • 负责人:
  • 金额:
    $ 36万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-07-01 至 2021-06-30
  • 项目状态:
    已结题

项目摘要

Nanoscale lasers are important for a wide range of applications, especially in optical interconnects for integrated nanophotonic circuits in future computers. Despite great progress made, no such light source currently meets the stringent requirements of future on-chip interconnects. Current semiconductor lasers consume ~ 0.1-1 pico (one trillionth) joule of energy per bit of information transmitted; however, the required lasers must consume less than 0.01 pico-joule of energy per bit, which in turn limits the dimensions of such lasers to 100s of nanometers to displace electronic interconnects. The proposed project focuses on fundamental research to develop such nanoscale light sources with high energy efficiency. If successful, the research would have far reaching societal, economical, and educational impacts by 1) addressing energy efficiency issue, because the amount of internet-related energy consumption is increasing at a rate that far exceeds the current increasing capacity of energy generation; 2) training undergraduate and graduate students, especially those from the underrepresented groups, in research and development of green-photonic technology through nanophotonic device design, nano-fabrication, and the development of future computer technologies.Nanoscale lasers require two key ingredients: a small cavity to confine photons and efficient optical gain materials. One of the most efficient and smallest-volume gain media emerged recently is the two-dimensional (2D) layered materials of transition metal di-chalcogenides (TMDCs). Recent research has demonstrated lasing using only a single layer of TMDCs. These studies have demonstrated 2D materials as potentially the most efficient gain materials. But all experiments to date have required optical pumping, while their operation under electrical injection is necessary for on-chip applications.The proposed efforts aim at developing the first electrical-injection nanolasers based on 2D TMDCs to address the fundamental challenges of energy efficiency. The proposed approach combines the most efficient optical gain material of 2D TMDCs with high-quality silicon cavities to fabricate the most energy-efficient nanolasers. The 2D materials operating on excitonic transitions provide several benefits to nanolasers: the most efficient optical gain material, the smallest gain volume to achieve lasing, and ease of integration into a silicon platform. The Si-nanobeam cavity provides the highest quality factor with the lowest possible laser threshold, while offering advantages of compatibility with electronics and maturity in fabrication. Such an electrical injection nanolaser on a Si-platform is ideally suited for optical interconnects and other Si-based applications.The objective of the proposal is to study the carrier injection into 2D monolayer molybdenum ditelluride with optimized design to achieve the first electrical injection nanolaser using a 2D gain material on a Si-platform by combining theoretical design and simulation with experimental fabrication and characterization. Achieving this objective would lay the ground work for development of a variety of future devices for use in sensing and chip-level interconnects for future energy-efficient computers.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
纳米级激光具有广泛的应用前景,特别是在未来计算机集成纳米光子电路的光学互连中。尽管已经取得了很大的进步,但目前还没有这样的光源满足未来片上互连的严格要求。目前的半导体激光器每传输一比特信息消耗约0.1-1皮焦耳的能量;然而,所需的激光器每比特消耗的能量必须低于0.01皮焦耳,这反过来又将这种激光器的尺寸限制在100纳米以取代电子互连。拟议的项目侧重于基础研究,以开发这种具有高能效的纳米级光源。如果成功,这项研究将从以下方面产生深远的社会、经济和教育影响:1)解决能源效率问题,因为与互联网相关的能源消耗的增长速度远远超过目前能源发电能力的增长;2)通过纳米光子器件设计、纳米制造和未来计算机技术的发展,培养本科生和研究生,特别是来自弱势群体的本科生和研究生,进行绿色光子技术的研究和开发。纳米级激光需要两个关键因素:限制光子的小腔和高效的光学增益材料。最近出现的最有效、体积最小的增益介质之一是过渡金属双硫属化合物(TMDCs)的二维层状材料。最近的研究表明,仅使用单层TMDC就可以实现激光。这些研究表明,2D材料可能是最有效的增益材料。但到目前为止,所有的实验都需要光泵浦,而它们在电注入下的工作对于芯片上的应用是必要的。拟议的努力旨在开发第一个基于2D TMDDC的电注入纳米激光器,以解决能源效率的根本挑战。该方法将最有效的二维TMDDC光学增益材料与高质量的硅腔相结合,以制造最节能的纳米激光器。工作在激子跃迁上的2D材料为纳米激光器提供了几个好处:最有效的光学增益材料,实现激光的最小增益体积,以及易于集成到硅平台。硅纳米束腔提供了最高的品质因数和尽可能低的激光阈值,同时提供了与电子学兼容和制造成熟的优势。这种硅平台上的电注入纳米激光器非常适合于光学互连和其他硅基应用。本方案的目标是通过优化设计研究载流子注入到二维单分子层二硫化钼中,通过理论设计和模拟结合实验制造和表征,实现第一个在硅平台上使用二维增益材料的电注入纳米激光器。实现这一目标将为开发用于未来节能计算机的传感和芯片级互连的各种未来设备奠定基础。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Super-Stable High-Quality Few-Layer Black Phosphorus for Photonic Applications
  • DOI:
    10.1021/acsanm.1c00351
  • 发表时间:
    2021-04-20
  • 期刊:
  • 影响因子:
    5.9
  • 作者:
    Li, Dongying;Yu, Yueyang;Ning, Cun-Zheng
  • 通讯作者:
    Ning, Cun-Zheng
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Cun-Zheng Ning其他文献

Excitonic complexes and optical gain in two-dimensional molybdenum ditelluride well below the Mott transition
远低于莫特跃迁的二维二碲化钼中的激子配合物和光学增益
  • DOI:
    10.1038/s41377-020-0278-z
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhen Wang;Hao Sun;Qiyao Zhang;Jiabin Feng;Jianxing Zhang;Yongzhuo Li;Cun-Zheng Ning
  • 通讯作者:
    Cun-Zheng Ning
Reconstructing Local Profile of Exciton–Emission Wavelengths across a WS2 Bubble beyond the Diffraction Limit
重建激子的局部轮廓 - 超过衍射极限的 WS2 气泡的发射波长
  • DOI:
    10.1021/acsnano.0c01337
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    17.1
  • 作者:
    Danyang Zhang;Lin Gan;Jianxing Zhang;Ruiling Zhang;Zhen Wang;Jiabin Feng;Hao Sun;Cun-Zheng Ning
  • 通讯作者:
    Cun-Zheng Ning
Semiconductor nanolasers and the size-energy-efficiency challenge: a review
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    17.3
  • 作者:
    Cun-Zheng Ning
  • 通讯作者:
    Cun-Zheng Ning
Bandgap engineering in semiconductor alloy nanomaterials with widely tunable compositions
具有广泛可调组成的半导体合金纳米材料中的带隙工程
  • DOI:
    10.1038/natrevmats.2017.70
  • 发表时间:
    2017-10-31
  • 期刊:
  • 影响因子:
    86.200
  • 作者:
    Cun-Zheng Ning;Letian Dou;Peidong Yang
  • 通讯作者:
    Peidong Yang

Cun-Zheng Ning的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Cun-Zheng Ning', 18)}}的其他基金

EAGER: On-Chip Optical Amplifier Using Novel Erbium-Chloride Silicate Single Crystal Nanowires
EAGER:使用新型氯化铒硅酸盐单晶纳米线的片上光学放大器
  • 批准号:
    1228512
  • 财政年份:
    2013
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant

相似海外基金

Effect of biofilm formation on multiphase flow and wetting properties during cyclic injection of hydrogen in rocks
岩石循环注氢过程中生物膜形成对多相流和润湿特性的影响
  • 批准号:
    2901554
  • 财政年份:
    2024
  • 资助金额:
    $ 36万
  • 项目类别:
    Studentship
Micron-scale, chemically-controlled, auto-injection systems for at-home drug delivery
用于家庭给药的微米级化学控制自动注射系统
  • 批准号:
    EP/X04128X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 36万
  • 项目类别:
    Research Grant
OVERCOMP: Interface Formation and Bond Strength Prediction in Composite Injection Overmoulding
OVERCOMP:复合材料注塑包覆成型中的界面形成和粘合强度预测
  • 批准号:
    EP/X041360/1
  • 财政年份:
    2024
  • 资助金额:
    $ 36万
  • 项目类别:
    Research Grant
Development of a sustainable biopolymer for extrusion and injection moulding manufacturing
开发用于挤出和注塑制造的可持续生物聚合物
  • 批准号:
    10092365
  • 财政年份:
    2024
  • 资助金额:
    $ 36万
  • 项目类别:
    Collaborative R&D
Understanding the lived experience of injection drug use and access to harm reduction services in Northern and smaller urban settings: the case of Sudbury, Ontario
了解北部和较小城市环境中注射毒品使用和获得减少伤害服务的生活经历:安大略省萨德伯里的案例
  • 批准号:
    487998
  • 财政年份:
    2023
  • 资助金额:
    $ 36万
  • 项目类别:
    Operating Grants
Social and structural determinants of injection drug use-associated bacterial and fungal infections: A qualitative systematic review and thematic synthesis
注射吸毒相关细菌和真菌感染的社会和结构决定因素:定性系统评价和主题综合
  • 批准号:
    495316
  • 财政年份:
    2023
  • 资助金额:
    $ 36万
  • 项目类别:
Reverse translarional research based on cultured human corneal endothelial cell injection therapy
基于培养人角膜内皮细胞注射疗法的反向翻译研究
  • 批准号:
    23H03062
  • 财政年份:
    2023
  • 资助金额:
    $ 36万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Neutrino oscillation at T2K and Hyper Kamiokande and development of the Hyper Kamiokande light injection calibration system
T2K 和 Hyper Kamiokande 的中微子振荡以及 Hyper Kamiokande 光注入校准系统的开发
  • 批准号:
    2888846
  • 财政年份:
    2023
  • 资助金额:
    $ 36万
  • 项目类别:
    Studentship
Geochemical impact of CO2 and H2 injection on geomechanical and petrophysical properties of caprock to ensure safe containment: an experimental and an
注入 CO2 和 H2 对盖层地质力学和岩石物理性质的地球化学影响以确保安全封堵:实验和研究
  • 批准号:
    2889089
  • 财政年份:
    2023
  • 资助金额:
    $ 36万
  • 项目类别:
    Studentship
Liquid Ammonia Direct Injection (LADI) fundamental physics and modelling of the aero-thermodynamic of transitional atomisation regime
液氨直喷 (LADI) 基础物理和过渡雾化状态的空气热力学建模
  • 批准号:
    EP/X022811/1
  • 财政年份:
    2023
  • 资助金额:
    $ 36万
  • 项目类别:
    Fellowship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了