2D Grain Boundary Phases: Establishing an Electronic Basis for Engineering Superior Copper Alloy Behavior

二维晶界相:为工程优异的铜合金行为建立电子基础

基本信息

  • 批准号:
    1808277
  • 负责人:
  • 金额:
    $ 31.06万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-07-01 至 2023-06-30
  • 项目状态:
    已结题

项目摘要

Non-technical summary: Metals and alloys (blends) such as bronze have been used by mankind for millennia before the atomic nature of matter was known. Even today, the details of how atoms interact are known only for a few combinations of metals, because the tools for studying materials at the atomic level have only recently become available. Those details have become increasingly important as modern technological advances demand smaller, lighter, and more compact designs with increased capabilities. This project will explore why adding certain metals make copper more flexible while others make it more brittle, (or more/less strong, or more/less conductive). The origin of this behavior can be traced to the interaction of the atoms and their electrons at internal defects called grain boundaries, where the atoms are packed together imperfectly. These boundaries are found throughout all metals, and greatly impact the behavior of metal parts, from wires in computer chips to seat brackets in airplanes. Understanding these interactions will allow engineers to design alloys from the atom level upward for the first time, enabling them to tailor properties of the alloys to reduce the power used in manufacturing, to prolong the service life of metal parts, or to create complex designs without compromising performance. The results of this work will be shared with the scientific and industrial communities at national and international technical conferences by students who, when they graduate, will become highly educated and practically trained members of the workforce. Participating in this project will also expose students to outreach and mentoring opportunities through several existing programs at SUNY Poly, including the continuing education of secondary school teachers, summer science camps for high school students, and a general science seminar series at a local branch of the public library. The professor and her team are committed to these efforts to de-mystify technology and make science (and scientists) accessible to all. Technical summary: Grain boundaries strongly impact a range of properties and behavior of polycrystalline metals; in nanostructured materials this effect can be even more dramatic because the number of atoms participating in those boundaries constitutes an appreciable fraction of the total atoms in the sample. As a result, observable properties are often dominated by interface, not bulk, material properties. Solute segregating to some or all of these interfaces can change the energy, mobility, structure and cohesion of boundaries through electronic interactions with the surrounding matrix. The nature of these interactions will be examined using a combination of analytical transmission electron microscopy, electron energy loss spectroscopy, and density functional theory. These results will be used to elucidate the correlations between the atomic and electronic structures at grain boundaries and observed electro-mechanical properties of select copper alloys, to enable future materials-by-design.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术性总结:金属和合金(混合物),如青铜,在物质的原子性质被发现之前,已经被人类使用了几千年。即使在今天,原子如何相互作用的细节也只知道金属的几种组合,因为在原子水平上研究材料的工具最近才出现。随着现代技术的进步,这些细节变得越来越重要,需要更小,更轻,更紧凑的设计,以及更大的功能。这个项目将探讨为什么添加某些金属使铜更灵活,而其他金属使它更脆(或更强/更弱,或更强/更弱)。这种行为的起源可以追溯到原子和它们的电子在称为晶界的内部缺陷处的相互作用,在晶界处原子不完美地聚集在一起。这些边界存在于所有金属中,并极大地影响金属部件的行为,从计算机芯片中的电线到飞机中的座椅支架。了解这些相互作用将使工程师能够首次从原子水平向上设计合金,使他们能够定制合金的特性,以减少制造中使用的功率,延长金属零件的使用寿命,或在不影响性能的情况下创建复杂的设计。这项工作的成果将由学生在国家和国际技术会议上与科学和工业界分享,他们毕业后将成为受过高等教育和实际培训的劳动力。参与该项目还将通过SUNY Poly现有的几个项目让学生接触到推广和指导机会,包括中学教师的继续教育,高中生的暑期科学夏令营,以及在当地公共图书馆分支举办的普通科学研讨会系列。教授和她的团队致力于这些努力,以消除技术的神秘感,使科学(和科学家)为所有人所用。技术总结:晶界强烈影响多晶金属的一系列性质和行为;在纳米结构材料中,这种影响可能更加引人注目,因为参与这些边界的原子数量构成了样品中总原子的可观部分。因此,可观察到的性能往往是由界面,而不是散装,材料性能。溶质分离到这些界面中的一些或全部可以通过与周围基质的电子相互作用改变边界的能量、流动性、结构和内聚力。这些相互作用的性质将使用分析透射电子显微镜,电子能量损失谱和密度泛函理论的组合进行检查。这些结果将用于阐明晶界处的原子和电子结构与所选铜合金的观察到的机电性能之间的相关性,以实现未来的材料设计。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kathleen Dunn其他文献

Misdiagnosis of Leiomyosarcoma after Radiofrequency Ablation of Uterine Myomas
  • DOI:
    10.1016/j.jmig.2018.08.004
  • 发表时间:
    2019-03-01
  • 期刊:
  • 影响因子:
  • 作者:
    Shira Varon;Ram Parvataneni;Elaine Waetjen;Kathleen Dunn;Vanessa L Jacoby
  • 通讯作者:
    Vanessa L Jacoby
Study of copper-refractory metal interfaces via solid-state wetting for emerging nanoscale interconnect applications
  • DOI:
    10.1557/jmr.2006.0040
  • 发表时间:
    2006-01-01
  • 期刊:
  • 影响因子:
    2.900
  • 作者:
    Oscar van der Straten;Yu Zhu;Jonathan Rullan;Kathleen Dunn;Alain E. Kaloyeros
  • 通讯作者:
    Alain E. Kaloyeros
Atomic layer deposition of tantalum nitride for ultrathin liner applications in advanced copper metallization schemes
  • DOI:
    10.1557/jmr.2004.19.2.447
  • 发表时间:
    2004-02-01
  • 期刊:
  • 影响因子:
    2.900
  • 作者:
    Oscar van der Straten;Yu Zhu;Kathleen Dunn;Eric T. Eisenbraun;Alain E. Kaloyeros
  • 通讯作者:
    Alain E. Kaloyeros
Syndrome X: medical nutrition therapy.
X综合症:医学营养疗法。
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    6.1
  • 作者:
    Karen Roberts;Kathleen Dunn;Sandra K. Jean;Claude K Lardinois
  • 通讯作者:
    Claude K Lardinois
ngl9: a third MADS box gene expressed in alfalfa root nodules.
ngl9:在苜蓿根瘤中表达的第三个 MADS 盒基因。

Kathleen Dunn的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kathleen Dunn', 18)}}的其他基金

NER: Focused Ion Beam (FIB) Micromachining and Advanced Characterization of Carbon Nanotube-Metal Junctions
NER:聚焦离子束 (FIB) 微加工和碳纳米管-金属结的高级表征
  • 批准号:
    0210249
  • 财政年份:
    2002
  • 资助金额:
    $ 31.06万
  • 项目类别:
    Standard Grant
Resource Partnerships Serving Precollege Science Teachers inthe Northeastern United States
为美国东北部大学前科学教师提供资源合作伙伴关系
  • 批准号:
    8316286
  • 财政年份:
    1984
  • 资助金额:
    $ 31.06万
  • 项目类别:
    Standard Grant

相似国自然基金

水稻Big Grain3 通过调控细胞分裂素转运调节籽粒大小
  • 批准号:
    2019JJ50243
  • 批准年份:
    2019
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
甘蓝型油菜Large Grain基因调控粒重的分子机制研究
  • 批准号:
    31972875
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目

相似海外基金

Grain boundary disordering in minerals
矿物晶界无序
  • 批准号:
    23H00137
  • 财政年份:
    2023
  • 资助金额:
    $ 31.06万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Development of atomic-resolution electron tomography for grain boundary analysis
用于晶界分析的原子分辨率电子断层扫描技术的发展
  • 批准号:
    23K13546
  • 财政年份:
    2023
  • 资助金额:
    $ 31.06万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Collaborative Research: Learning Microstructure- and Temperature-Dependencies of Grain Boundary Plastic Deformation Localization via Multi-modal In situ Characterization
合作研究:通过多模态原位表征学习晶界塑性变形局部化的微观结构和温度依赖性
  • 批准号:
    2234892
  • 财政年份:
    2023
  • 资助金额:
    $ 31.06万
  • 项目类别:
    Continuing Grant
The diffusion mechanism of charged defects at grain boundary
晶界带电缺陷的扩散机制
  • 批准号:
    22KJ0978
  • 财政年份:
    2023
  • 资助金额:
    $ 31.06万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
In-service Catastrophic Failure: or Controlling the Grain Boundary Network Evolution
运行中的灾难性故障:或控制晶界网络的演化
  • 批准号:
    2888456
  • 财政年份:
    2023
  • 资助金额:
    $ 31.06万
  • 项目类别:
    Studentship
Collaborative Research: Learning Microstructure- and Temperature-Dependencies of Grain Boundary Plastic Deformation Localization via Multi-modal In situ Characterization
合作研究:通过多模态原位表征学习晶界塑性变形局部化的微观结构和温度依赖性
  • 批准号:
    2234891
  • 财政年份:
    2023
  • 资助金额:
    $ 31.06万
  • 项目类别:
    Continuing Grant
Fundamental Insights into Multi-element Grain Boundary Segregation in Nanocrystalline Alloys
纳米晶合金中多元素晶界偏析的基本见解
  • 批准号:
    2343682
  • 财政年份:
    2023
  • 资助金额:
    $ 31.06万
  • 项目类别:
    Continuing Grant
Role of Diffusion-Induced Grain Boundary Migration in Alloy Oxidation
扩散引起的晶界迁移在合金氧化中的作用
  • 批准号:
    2236887
  • 财政年份:
    2023
  • 资助金额:
    $ 31.06万
  • 项目类别:
    Standard Grant
Quartz grain-boundary topology as a stress and strain-rate meter and a new flow law
石英晶界拓扑作为应力和应变率计以及新的流动定律
  • 批准号:
    2243658
  • 财政年份:
    2023
  • 资助金额:
    $ 31.06万
  • 项目类别:
    Standard Grant
Synchrotron deformation experiments of olivine under the deep upper mantle conditions: Transient creep, plastic anisotropy, and the role of grain-boundary sliding.
上地幔深部条件下橄榄石的同步加速变形实验:瞬态蠕变、塑性各向异性和晶界滑动的作用。
  • 批准号:
    2322719
  • 财政年份:
    2023
  • 资助金额:
    $ 31.06万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了