Role of Diffusion-Induced Grain Boundary Migration in Alloy Oxidation
扩散引起的晶界迁移在合金氧化中的作用
基本信息
- 批准号:2236887
- 负责人:
- 金额:$ 39.73万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
NON-TECHNICAL SUMMARYOxidation resistance remains a critical requirement for materials applications at medium to hightemperatures in many key sectors such as energy, transportation, and aerospace. Decades of studies have generated significant knowledge about how to improve the oxidation resistance of structural materials, with strategies including the use of alloying elements, coatings, and surface treatments. However, many of the mechanisms behind these strategies remain elusive limiting our ability to design better performing alloys. In this context, the project addresses the impact of deformation and small grain sizes on the oxidation response of selected structural alloys. The work specifically focuses on elucidating the key role of diffusion along moving grain boundaries supplying elements to the alloy surface to form an oxide layer. This ubiquitous mechanism has been largely ignored and therefore unexplored in the context of alloy oxidation; yet it can explain the impacts of surface deformation and small grain sizes on the oxidation behavior of alloy systems.This program contributes to the general scientific understanding of diffusion along moving grain boundaries as a ubiquitous mechanism in crystalline materials under diffusive conditions and increases our mechanistic understanding of materials under extreme environments with impact on the development of new alloys and microstructures, particularly in the context of advanced manufacturing processes. Because of its focus on materials under extreme environments and specifically high temperature oxidation, the proposed research impacts key areas of industrial and national importance, including transportation, energy, and aerospace. In addition to its scientific and technological impacts, the program also contributes to the recruitment, retention, and training in advanced research methods and techniques of a diverse student body and workforce through its research activities. The project also includes activities and practices focusing on increasing diversity, equity, inclusion, and accessibility awareness in the classroom, laboratories, and campus wide.TECHNICAL SUMMARYOxidation resistance remains a critical requirement for applications at medium to high temperatures in many key sectors (energy, transportation, aerospace). While avenues to improve the oxidation resistance of structural materials, i.e., alloying, coating, and surface treatments, are commonly used, many of the mechanisms behind these strategies remain elusive limiting our ability to design better performing alloys. The project addresses the hypothesis that diffusion-induced grain boundary migration (DIGM) is ubiquitous in alloy oxidation and uniquely explains the impacts of surface deformation and grain refinement on the oxidation behavior of alloy systems. To support this hypothesis, this project uses a series of increasingly complex alloys, from model Ni alloys to multi principal element alloys for which diffusion kinetics have been the object of debate. The program quantifies DIGM during alloy oxidation, generating observations, experimental data, and analyses necessary to increase our understanding of solute transport and phase transformation during DIGM with implications for not only oxidation modeling and mitigation but also for any conventional and complex concentrated alloy under diffusive conditions at intermediate temperatures where DIGM can occur. The approach combines systematic series of experiments using state-of-the-art characterization techniques tying micron scale observations to atomistic mechanisms, establishing the knowledge base for future modeling and computational approaches within the Materials Genome Initiative.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在能源、交通和航空航天等许多关键领域,抗氧化性仍然是材料在中高温下应用的关键要求。几十年的研究已经产生了关于如何提高结构材料抗氧化性的重要知识,其策略包括使用合金元素,涂层和表面处理。然而,这些策略背后的许多机制仍然难以捉摸,限制了我们设计性能更好的合金的能力。在这种情况下,该项目解决了变形和小晶粒尺寸对所选结构合金氧化响应的影响。这项工作特别侧重于阐明沿移动晶界向合金表面提供元素以形成氧化层的扩散的关键作用。这种普遍存在的机制在很大程度上被忽视,因此在合金氧化的背景下未被探索;然而,它可以解释表面变形和小晶粒尺寸对合金体系氧化行为的影响。该计划有助于对扩散条件下晶体材料中沿移动晶界扩散的普遍机制的一般科学理解,并增加我们对极端环境下材料的机理理解,影响新合金和微结构的发展,特别是在先进制造工艺的背景下。由于其重点关注极端环境下的材料,特别是高温氧化,拟议的研究将影响工业和国家重要的关键领域,包括运输,能源和航空航天。除了科学和技术方面的影响外,该项目还通过其研究活动为不同的学生群体和工作人员提供了先进研究方法和技术的招聘、保留和培训。该项目还包括在课堂、实验室和校园范围内增加多样性、公平性、包容性和无障碍意识的活动和实践。技术概述抗氧化仍然是许多关键领域(能源、交通、航空航天)中高温应用的关键要求。虽然提高结构材料抗氧化性的途径,即合金化,涂层和表面处理,是常用的,但这些策略背后的许多机制仍然难以捉摸,限制了我们设计性能更好的合金的能力。该项目解决了扩散诱导晶界迁移(DIGM)在合金氧化中普遍存在的假设,并独特地解释了表面变形和晶粒细化对合金系统氧化行为的影响。为了支持这一假设,该项目使用了一系列越来越复杂的合金,从模型Ni合金到多主元素合金,这些合金的扩散动力学一直是争论的对象。该项目量化了合金氧化过程中的DIGM,生成了必要的观测、实验数据和分析,以增加我们对DIGM过程中溶质传输和相变的理解,不仅对氧化建模和减缓有影响,而且对任何常规和复杂的浓合金在中间温度扩散条件下可能发生DIGM的情况也有影响。该方法结合了系统的一系列实验,使用最先进的表征技术,将微米尺度的观察与原子机制联系起来,为材料基因组计划中的未来建模和计算方法建立知识库。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Emmanuelle Marquis其他文献
Emmanuelle Marquis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Emmanuelle Marquis', 18)}}的其他基金
DMREF: Collaborative Research: GOALI: Localized Phase Transformation (LPT) Strengthening for Next-Generation Superalloys
DMREF:合作研究:GOALI:下一代高温合金的局部相变 (LPT) 强化
- 批准号:
1922275 - 财政年份:2019
- 资助金额:
$ 39.73万 - 项目类别:
Standard Grant
Travel Support for student participation at the 2018 Electron Backscatter Diffraction Topical Conference
为学生参加 2018 年电子背散射衍射专题会议提供差旅支持
- 批准号:
1829336 - 财政年份:2018
- 资助金额:
$ 39.73万 - 项目类别:
Standard Grant
MRI: Acquisition of a Scanning Electron Microscope for Real-time Studies of Novel Materials Processes and Functionality
MRI:获取扫描电子显微镜以实时研究新型材料工艺和功能
- 批准号:
1625671 - 财政年份:2016
- 资助金额:
$ 39.73万 - 项目类别:
Standard Grant
CAREER: Solute Effects on the Oxidation Behavior of Ni Alloys
职业:溶质对镍合金氧化行为的影响
- 批准号:
1352157 - 财政年份:2014
- 资助金额:
$ 39.73万 - 项目类别:
Continuing Grant
EAGER - Nanoscale 3D Imaging of ice-embedded metallic structures
EAGER - 冰嵌入金属结构的纳米级 3D 成像
- 批准号:
1201436 - 财政年份:2012
- 资助金额:
$ 39.73万 - 项目类别:
Standard Grant
相似国自然基金
带drift-diffusion项的抛物型偏微分方程组的能控性与能稳性
- 批准号:61573012
- 批准年份:2015
- 资助金额:49.0 万元
- 项目类别:面上项目
Levy过程驱动的随机Fast-Diffusion方程的Harnack不等式及其应用
- 批准号:11126079
- 批准年份:2011
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
相似海外基金
CAS: Estimates of the decay of diffusion induced flows in strongly stratified fluids and ergodic mixing properties of solutes driven by randomly moving walls in viscous fluids.
CAS:对强分层流体中扩散诱导流的衰减以及粘性流体中随机移动壁驱动的溶质的遍历混合特性的估计。
- 批准号:
2308063 - 财政年份:2023
- 资助金额:
$ 39.73万 - 项目类别:
Standard Grant
Analysis of the mechanism of mechanical stress-induced osteogenesis using method of numerical analysis on local mechano-electric induced particle diffusion and its application for osteosynthesis
局部机电诱导颗粒扩散数值分析方法分析机械应力诱导成骨机制及其在接骨术中的应用
- 批准号:
21K12631 - 财政年份:2021
- 资助金额:
$ 39.73万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Laser-induced fluorescence measurement of gas-liquid multiphase diffusion flames in high-pressure rocket combustion
高压火箭燃烧中气液多相扩散火焰的激光诱导荧光测量
- 批准号:
20K21042 - 财政年份:2020
- 资助金额:
$ 39.73万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Control of Photo-Induced Ion Diffusion Phenomena at Thin Film Interfaces and its Application to "Photochromic Batteries"
薄膜界面光致离子扩散现象的控制及其在“光致变色电池”中的应用
- 批准号:
20H02086 - 财政年份:2020
- 资助金额:
$ 39.73万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Single crystal nanowhiskers by stress-induced atomic diffusion using multi-layer metal nanostructures
使用多层金属纳米结构通过应力诱导原子扩散制备单晶纳米晶须
- 批准号:
20K20959 - 财政年份:2020
- 资助金额:
$ 39.73万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
NSFGEO-NERC: Collaborative Research: Properties and Mechanisms of the Multiscale Eddy-Induced Diffusion
NSFGEO-NERC:合作研究:多尺度涡激扩散的特性和机制
- 批准号:
1849990 - 财政年份:2019
- 资助金额:
$ 39.73万 - 项目类别:
Standard Grant
NSFGEO-NERC: Collaborative Research: Properties and Mechanisms of the Multiscale Eddy-Induced Diffusion
NSFGEO-NERC:合作研究:多尺度涡激扩散的特性和机制
- 批准号:
NE/T002220/1 - 财政年份:2019
- 资助金额:
$ 39.73万 - 项目类别:
Research Grant
Clarification of the multi-layered structure of stationary solutions induced by the cross-diffusion limit in the Lotka-Volterra system
澄清 Lotka-Volterra 系统中交叉扩散极限引起的稳态解的多层结构
- 批准号:
19K03581 - 财政年份:2019
- 资助金额:
$ 39.73万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study on hydrogen diffusion in steels induced by tribochemical decomposition of lubricants and the depression effect of DLC coatings on hydrogen diffusion
润滑剂摩擦化学分解引起的钢中氢扩散及DLC涂层对氢扩散的抑制作用研究
- 批准号:
17K06130 - 财政年份:2017
- 资助金额:
$ 39.73万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Cold homogenization of Fe/Pt based layered thin films induced by diffusion processes
扩散过程引起的 Fe/Pt 基层状薄膜的冷均匀化
- 批准号:
370878165 - 财政年份:2017
- 资助金额:
$ 39.73万 - 项目类别:
Research Grants