Collaborative Research: CDS&E: Theoretical Foundations and Algorithms for L1-Norm-Based Reliable Multi-Modal Data Analysis

合作研究:CDS

基本信息

  • 批准号:
    1808591
  • 负责人:
  • 金额:
    $ 17.53万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-09-01 至 2021-08-31
  • 项目状态:
    已结题

项目摘要

In modern applications of science and engineering, large volumes of data are collected from diverse sensor modalities, commonly stored in the form of high-order arrays (tensors), and jointly analyzed in order to extract information about underlying phenomena. This joint tensor analysis can exploit inherent dependencies across data modalities and allow for markedly enhanced inference. Standard methods for tensor analysis rely on formulations that are sensitive to heavily corrupted points among the processed data (outliers). To counteract the destructive impact of outliers in modern data analysis (and thereto relying applications), this project will investigate new theory and robust algorithmic methods. The performance benefits of the developed tools will be evaluated in applications from the fields of data analytics, machine learning and computer vision. Thus, this research aspires to increase significantly the reliability of data-enabled research across science and engineering. Combining theoretical explorations, with practical algorithmic solutions for data analysis and experimental evaluations, this project has the potential to build significant future capacity not only for U.S. academic institutions but also for the U.S. government and industry. Thus, apart from promoting the progress of science, this project could contribute to advances in the national prosperity and welfare. In addition, research activities under this project will be integrated with education. Participating students, at both graduate and undergraduate levels, will gain important experience in optimization theory, machine learning, computer vision, and data mining, among other areas. Moreover, the project plan includes multiple STEM outreach activities and supports diversity in STEM by involving?students from underrepresented groups.In this project, the theoretical underpinnings of L1-norm tensor analysis will be investigated, with a focus on its computational hardness and exact solution. Then, based on these new foundations, efficient/practical algorithms for L1-norm tensor analysis will be explored, together with scalable and distributed software implementations. These theoretical and algorithmic investigations are expected to advance significantly the knowledge in the currently under-explored area of L1-norm tensor analysis and deliver highly impactful methodologies for outlier-resistant multimodal data processing. Next, the PIs will employ the newly developed algorithmic tools in key problems from the fields of data analytics, machine learning and computer vision. In addition, research activities under this project will be integrated with education. Participating students, at both graduate and undergraduate levels, will gain important experience in optimization theory, machine learning, computer vision, and data mining, among other areas. Moreover, the project plan includes multiple STEM outreach activities?and supports diversity in STEM by involving students from underrepresented groups.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在现代科学和工程应用中,从不同的传感器模态收集大量数据,通常以高阶阵列(张量)的形式存储,并进行联合分析,以提取有关潜在现象的信息。这种联合张量分析可以利用跨数据模态的固有依赖性,并允许显著增强的推理。张量分析的标准方法依赖于对处理后的数据(离群值)中严重损坏的点敏感的公式。为了抵消现代数据分析中异常值的破坏性影响(及其依赖的应用程序),该项目将研究新的理论和强大的算法方法。将在数据分析、机器学习和计算机视觉领域的应用中评估所开发工具的性能优势。因此,这项研究旨在显著提高科学和工程领域数据支持研究的可靠性。该项目将理论探索与用于数据分析和实验评估的实用算法解决方案相结合,不仅有可能为美国学术机构,而且也有可能为美国政府和行业建立重要的未来能力。因此,除了促进科学进步外,该项目还可以促进国家繁荣和福利。此外,该项目下的研究活动将与教育相结合。参与的学生,无论是研究生还是本科生,都将获得优化理论,机器学习,计算机视觉和数据挖掘等领域的重要经验。此外,该项目计划包括多个STEM外展活动,并通过参与?在这个项目中,L1范数张量分析的理论基础将被研究,重点是它的计算难度和精确解。然后,基于这些新的基础,L1范数张量分析的有效/实用算法将被探索,以及可扩展和分布式软件实现。这些理论和算法研究预计将大大推进L1范数张量分析这一目前尚未探索的领域的知识,并为抗异常值的多模态数据处理提供高度有效的方法。接下来,PI将在数据分析、机器学习和计算机视觉领域的关键问题中使用新开发的算法工具。此外,该项目下的研究活动将与教育相结合。参与的学生,无论是研究生还是本科生,都将获得优化理论,机器学习,计算机视觉和数据挖掘等领域的重要经验。此外,项目计划包括多个STEM外展活动?该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(16)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The Core Consistency of a Compressed Tensor
压缩张量的核心一致性
  • DOI:
    10.1109/dsw.2019.8755593
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tsitsikas, Georgios;Papalexakis, Evangelos E.
  • 通讯作者:
    Papalexakis, Evangelos E.
NSVD: Normalized Singular Value Deviation Reveals Number of Latent Factors in Tensor Decomposition
NSVD:归一化奇异值偏差揭示张量分解中潜在因子的数量
Tensorized Feature Spaces for Feature Explosion
用于特征爆炸的张化特征空间
  • DOI:
    10.1109/icpr48806.2021.9412320
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Pasricha, Ravdeep S.;Devineni, Pravallika;Papalexakis, Evangelos E.;Kannan, Ramakrishnan
  • 通讯作者:
    Kannan, Ramakrishnan
Tensor-based Complementary Product Recommendation
基于张量的互补产品推荐
OCTEN: Online Compression-Based Tensor Decomposition
OCTEN:在线基于压缩的张量分解
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Evangelos Papalexakis其他文献

Evangelos Papalexakis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Evangelos Papalexakis', 18)}}的其他基金

CAREER: Autonomous Tensor Analysis: From Raw Multi-Aspect Data to Actionable Insights
职业:自主张量分析:从原始多方面数据到可操作的见解
  • 批准号:
    2046086
  • 财政年份:
    2021
  • 资助金额:
    $ 17.53万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
  • 批准号:
    2348998
  • 财政年份:
    2025
  • 资助金额:
    $ 17.53万
  • 项目类别:
    Standard Grant
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
  • 批准号:
    2348999
  • 财政年份:
    2025
  • 资助金额:
    $ 17.53万
  • 项目类别:
    Standard Grant
"Small performances": investigating the typographic punches of John Baskerville (1707-75) through heritage science and practice-based research
“小型表演”:通过遗产科学和基于实践的研究调查约翰·巴斯克维尔(1707-75)的印刷拳头
  • 批准号:
    AH/X011747/1
  • 财政年份:
    2024
  • 资助金额:
    $ 17.53万
  • 项目类别:
    Research Grant
Democratizing HIV science beyond community-based research
将艾滋病毒科学民主化,超越社区研究
  • 批准号:
    502555
  • 财政年份:
    2024
  • 资助金额:
    $ 17.53万
  • 项目类别:
Translational Design: Product Development for Research Commercialisation
转化设计:研究商业化的产品开发
  • 批准号:
    DE240100161
  • 财政年份:
    2024
  • 资助金额:
    $ 17.53万
  • 项目类别:
    Discovery Early Career Researcher Award
Understanding the experiences of UK-based peer/community-based researchers navigating co-production within academically-led health research.
了解英国同行/社区研究人员在学术主导的健康研究中进行联合生产的经验。
  • 批准号:
    2902365
  • 财政年份:
    2024
  • 资助金额:
    $ 17.53万
  • 项目类别:
    Studentship
XMaS: The National Material Science Beamline Research Facility at the ESRF
XMaS:ESRF 的国家材料科学光束线研究设施
  • 批准号:
    EP/Y031962/1
  • 财政年份:
    2024
  • 资助金额:
    $ 17.53万
  • 项目类别:
    Research Grant
FCEO-UKRI Senior Research Fellowship - conflict
FCEO-UKRI 高级研究奖学金 - 冲突
  • 批准号:
    EP/Y033124/1
  • 财政年份:
    2024
  • 资助金额:
    $ 17.53万
  • 项目类别:
    Research Grant
UKRI FCDO Senior Research Fellowships (Non-ODA): Critical minerals and supply chains
UKRI FCDO 高级研究奖学金(非官方发展援助):关键矿产和供应链
  • 批准号:
    EP/Y033183/1
  • 财政年份:
    2024
  • 资助金额:
    $ 17.53万
  • 项目类别:
    Research Grant
TARGET Mineral Resources - Training And Research Group for Energy Transition Mineral Resources
TARGET 矿产资源 - 能源转型矿产资源培训与研究小组
  • 批准号:
    NE/Y005457/1
  • 财政年份:
    2024
  • 资助金额:
    $ 17.53万
  • 项目类别:
    Training Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了