Model Reduction of High Dimensional Hidden Markov Models and Markov Decision Processes
高维隐马尔可夫模型和马尔可夫决策过程的模型约简
基本信息
- 批准号:1808692
- 负责人:
- 金额:$ 36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Intellectual Merit: We currently live in an era where data is a major currency promising a transformative change to our society. Consequently, there has been a surge in the use of machine learning (ML) algorithms on high dimensional data producing unstructured stochastic models. Such models tend to be of very high dimensions limiting their utility in various applications involving optimization or decision systems. This proposal focuses on developing a foundational theory for model reduction applied to classes of stochastic models, in particular, Hidden Markov Models (HMMs); these are stochastic models that are described by underlying finite dimensional state space. Broader Impact: Ultimately, a model reduction theory will impact many fundamental aspects related to complex stochastic models including simulation, prediction, coding, robust learning, decision design and reinforcement learning. This research will develop new insights to address similar questions for other stochastic models including jump linear systems, and graphical models with latent variables and will have a direct impact on problems related to artificial intelligence and reinforcement learning. The latter is emerging as a popular approach for many decision-systems applications involving social behavior-- where simple mechanistic models do not exist. Examples of such problems are critical infrastructures and smart services where high dimensional unstructured data is available in real time. Models emerging in such approaches tend to have very high dimensions. A foundational theory for model reduction will affect the way we learn and utilize complex stochastic models. As a result, this development will enter our courses at MIT in a fashion similar to how model reduction theory impacted courses in linear system theory. The development should affect classes in stochastic models, machine learning, and statistical learning theory, reinforcement learning, and AI. We also intend to incorporate the connection between model reduction and statistical learning in our new MIT micromasters in statistics and data science.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
知识价值:我们目前生活在一个数据是一种主要货币的时代,它有望为我们的社会带来变革性的变化。因此,在高维数据上使用机器学习(ML)算法产生非结构化随机模型的情况激增。这样的模型往往是非常高的维度,限制了它们在涉及优化或决策系统的各种应用中的效用。该提案的重点是发展一个基本的理论模型减少应用到类的随机模型,特别是隐马尔可夫模型(HALGORY),这些是随机模型,描述了底层有限维状态空间。更广泛的影响:最终,模型简化理论将影响与复杂随机模型相关的许多基本方面,包括模拟,预测,编码,鲁棒学习,决策设计和强化学习。这项研究将开发新的见解,以解决其他随机模型的类似问题,包括跳跃线性系统和具有潜变量的图形模型,并将对与人工智能和强化学习相关的问题产生直接影响。后者正在成为许多涉及社会行为的决策系统应用程序的流行方法-其中不存在简单的机械模型。这样的问题的例子是关键的基础设施和智能服务,其中高维非结构化数据是真实的时间。在这种方法中出现的模型往往具有非常高的维度。模型简化的基础理论将影响我们学习和利用复杂随机模型的方式。因此,这种发展将以类似于模型简化理论如何影响线性系统理论课程的方式进入我们在麻省理工学院的课程。发展应该会影响随机模型,机器学习,统计学习理论,强化学习和AI的课程。 我们还打算将模型简化和统计学习之间的联系纳入我们新的麻省理工学院统计和数据科学微硕士课程中。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Sequential prediction under log-loss and misspecification
对数损失和错误指定下的顺序预测
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Feder, Meir;Polyanskiy, Yury
- 通讯作者:Polyanskiy, Yury
Strong Data Processing Constant Is Achieved by Binary Inputs
通过二进制输入实现强大的数据处理常数
- DOI:10.1109/tit.2021.3130189
- 发表时间:2022
- 期刊:
- 影响因子:2.5
- 作者:Ordentlich, Or;Polyanskiy, Yury
- 通讯作者:Polyanskiy, Yury
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Munther Dahleh其他文献
Selling information in competitive environments
- DOI:
10.1016/j.jet.2023.105779 - 发表时间:
2024-03-01 - 期刊:
- 影响因子:
- 作者:
Alessandro Bonatti;Munther Dahleh;Thibaut Horel;Amir Nouripour - 通讯作者:
Amir Nouripour
Munther Dahleh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Munther Dahleh', 18)}}的其他基金
EAGER: Modeling and Control of COVID-19 Transmission in Indoor Environments
EAGER:室内环境中 COVID-19 传播的建模和控制
- 批准号:
2114439 - 财政年份:2021
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
CPS:Medium:Collaborative Research: Smart Power Systems of the Future: Foundations for Understanding Volatility and Improving Operational Reliability
CPS:中:合作研究:未来的智能电力系统:理解波动性和提高运行可靠性的基础
- 批准号:
1135843 - 财政年份:2011
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
A New Paradigm for Understanding and Controlling Systemic Risks in Financial Markets
理解和控制金融市场系统性风险的新范式
- 批准号:
1027905 - 财政年份:2010
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Worshop on LIDS 2010: Paths Ahead in the Science of Information and Decision Systems To be Held at MIT Stata Center on November 11-13, 2009
LIDS 2010 研讨会:信息与决策系统科学的前进之路将于 2009 年 11 月 11 日至 13 日在麻省理工学院 Stata 中心举行
- 批准号:
0956244 - 财政年份:2009
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
EFRI-ARESCI: Foundations for Reconfigurable and Autonomous Cyber-Physical Systems: Cyber-Cities and Cyber-Universities
EFRI-ARESCI:可重构和自主网络物理系统的基础:网络城市和网络大学
- 批准号:
0735956 - 财政年份:2007
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Collaborative Research: Dynamic Task-Based Coordination of Large-Scale Mobile Robotic Networks
协作研究:大规模移动机器人网络的动态任务协调
- 批准号:
0625635 - 财政年份:2006
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Collaborative Research: Teamwork vs. Congestion: The Role of Scale in Large Mobile Networks
协作研究:团队合作与拥塞:规模在大型移动网络中的作用
- 批准号:
0621915 - 财政年份:2006
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
Multiscale Oscillatory Dynamics in Cortical Function
皮质功能的多尺度振荡动力学
- 批准号:
0300173 - 财政年份:2003
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Workshop on Future Directions for Systems and Control Theory; June 22-25, 1999; Cascais, Portugal
系统和控制理论未来方向研讨会;
- 批准号:
9909249 - 财政年份:1999
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Computational Methods of Nonlinear Control and Systems Identification
非线性控制与系统辨识的计算方法
- 批准号:
9907466 - 财政年份:1999
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
相似国自然基金
兼捕减少装置(Bycatch Reduction Devices, BRD)对拖网网囊系统水动力及渔获性能的调控机制
- 批准号:32373187
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Dimension Reduction and Complex High-Dimensional Data
降维和复杂的高维数据
- 批准号:
RGPIN-2021-04073 - 财政年份:2022
- 资助金额:
$ 36万 - 项目类别:
Discovery Grants Program - Individual
Development of Three-Dimensional Self-Water-Managed Catalyst Layer Structure for Cost Reduction of Polymer Electrolyte Fuel Cells
开发三维自水管理催化剂层结构以降低聚合物电解质燃料电池成本
- 批准号:
22K03976 - 财政年份:2022
- 资助金额:
$ 36万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Machine learning of high-dimensional life dynamics time series for reduction to low-dimensional systems and its application to controlling problems
用于还原为低维系统的高维生命动态时间序列的机器学习及其在控制问题中的应用
- 批准号:
22K11941 - 财政年份:2022
- 资助金额:
$ 36万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Dimension Reduction and Complex High-Dimensional Data
降维和复杂的高维数据
- 批准号:
DGECR-2021-00296 - 财政年份:2021
- 资助金额:
$ 36万 - 项目类别:
Discovery Launch Supplement
Dimension Reduction and Complex High-Dimensional Data
降维和复杂的高维数据
- 批准号:
RGPIN-2021-04073 - 财政年份:2021
- 资助金额:
$ 36万 - 项目类别:
Discovery Grants Program - Individual
Dimensional reduction of a dataset through autoencoders
通过自动编码器对数据集进行降维
- 批准号:
550476-2020 - 财政年份:2020
- 资助金额:
$ 36万 - 项目类别:
University Undergraduate Student Research Awards
Arithmetic and reduction of one-dimensional and higher-dimensional Abelian varieties over function fields
函数域上一维和高维阿贝尔簇的算术和约简
- 批准号:
442615504 - 财政年份:2020
- 资助金额:
$ 36万 - 项目类别:
Research Fellowships
Engineering Bifurcations in High-Dimensional Dynamical Systems Using Isostable Reduction Methods
使用等稳定约简方法在高维动力系统中设计分岔
- 批准号:
1933583 - 财政年份:2020
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Dimensional reduction method with interpretable estimated values
具有可解释估计值的降维方法
- 批准号:
19K20226 - 财政年份:2019
- 资助金额:
$ 36万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Elucidating the origin and consequences of dimensional reduction in bacterial growth control
阐明细菌生长控制中降维的起源和后果
- 批准号:
1818384 - 财政年份:2018
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant