Engineering Bifurcations in High-Dimensional Dynamical Systems Using Isostable Reduction Methods
使用等稳定约简方法在高维动力系统中设计分岔
基本信息
- 批准号:1933583
- 负责人:
- 金额:$ 32.05万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This grant will support research that will promote progress in the physical, chemical, and biological sciences thereby enhancing national health and prosperity. Over the past quarter century rapid progress of supercomputing capabilities has resulted in an explosion in the size and complexity of computational models. Model reduction is an imperative preliminary step in the mathematical analysis and subsequent implementation of active control strategies in these complex and high-dimensional systems. Unfortunately, existing reduction strategies are ill-equipped to understand the mechanisms governing qualitative changes in dynamical behavior, particularly when the underlying behavior is dominated by system nonlinearities. This award supports fundamental research that will develop mathematical reduction strategies that can be used to anticipate and engineer desired changes in the behavior of high-dimensional, nonlinear dynamical systems. These new methods will find use in a wide variety of applications such as cardiac electrophysiology, neural networks, and fluid flows with resulting benefits to national health and security. Important research findings will be incorporated into educational programs that benefit students from underrepresented backgrounds.The goal of this project is to study how a newly developed isostable reduction framework can be used to predict and engineer bifurcations in high-dimensional, nonlinear dynamical systems. The isostable reduction approach explicitly incorporates dominant system nonlinearities while retaining analytical tractability; as such it replicates system behaviors that well-established linear reduction strategies cannot. As part of this research, novel nonfeedback control frameworks will be created that can be used to stabilize chaotic and unstable dynamical systems of arbitrarily high dimension. Additionally, mathematical frameworks will be created to anticipate bifurcations that lead to the onset of spontaneous synchronization in strongly coupled oscillator networks. Strategies will also be developed to infer the necessary terms of isostable reduced equations in experimental applications which will allow for the implementation of these reduction strategies in systems for which the underlying model equations are not explicitly known. The primary applications in this project will be to models of cardiac and neural electrophysiology in pursuit of better disease treatment options.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这笔赠款将支持研究,将促进物理,化学和生物科学的进步,从而提高国家的健康和繁荣。 在过去的四分之一世纪中,超级计算能力的快速发展导致了计算模型的规模和复杂性的爆炸。 在这些复杂的高维系统中,模型降阶是数学分析和随后实施主动控制策略的必要的初步步骤。 不幸的是,现有的减少策略是装备不良,以了解机制的动力学行为的定性变化,特别是当基本的行为是由系统的非线性。 该奖项支持基础研究,将开发数学简化策略,可用于预测和设计高维非线性动力系统行为的预期变化。 这些新方法将用于各种应用,如心脏电生理学,神经网络和流体流动,从而有利于国家健康和安全。 重要的研究成果将被纳入教育计划,使来自代表性不足背景的学生受益。该项目的目标是研究如何使用新开发的等稳约化框架来预测和设计高维非线性动力系统中的分叉。 等稳降阶方法明确地结合了主导系统的非线性,同时保留了分析的易处理性;因此,它复制了完善的线性降阶策略无法复制的系统行为。 作为这项研究的一部分,将创建新的非反馈控制框架,可用于稳定任意高维的混沌和不稳定的动力系统。 此外,数学框架将被创建来预测分叉,导致在强耦合振荡器网络的自发同步的开始。 还将制定战略,以推断必要的条款,在实验应用中,这将允许实施这些减少战略的基础模型方程不明确已知的系统中的等稳简化方程。 该项目的主要应用将是心脏和神经电生理学模型,以寻求更好的疾病治疗方案。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(18)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Optimal open-loop desynchronization of neural oscillator populations
神经振荡器群的最佳开环去同步化
- DOI:10.1007/s00285-020-01501-1
- 发表时间:2020
- 期刊:
- 影响因子:1.9
- 作者:Wilson, Dan
- 通讯作者:Wilson, Dan
Degenerate isostable reduction for fixed-point and limit-cycle attractors with defective linearizations
具有缺陷线性化的定点和极限环吸引子的简并等稳态约简
- DOI:10.1103/physreve.103.022211
- 发表时间:2021
- 期刊:
- 影响因子:2.4
- 作者:Wilson, Dan
- 通讯作者:Wilson, Dan
Analysis of input-induced oscillations using the isostable coordinate framework
使用等稳态坐标框架分析输入引起的振荡
- DOI:10.1063/5.0036508
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Wilson, Dan
- 通讯作者:Wilson, Dan
Adaptive Isostable Reduction of Nonlinear PDEs With Time Varying Parameters
具有时变参数的非线性偏微分方程的自适应等稳态约简
- DOI:10.1109/lcsys.2020.3001439
- 发表时间:2021
- 期刊:
- 影响因子:3
- 作者:Wilson, Dan;Djouadi, Seddik M.
- 通讯作者:Djouadi, Seddik M.
A data-driven phase and isostable reduced modeling framework for oscillatory dynamical systems
振荡动力系统的数据驱动相和等稳态简化建模框架
- DOI:10.1063/1.5126122
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Wilson, Dan
- 通讯作者:Wilson, Dan
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dan Wilson其他文献
Urinary incontinence in stroke: results from the UK National Sentinel Audits of Stroke 1998-2004.
中风引起的尿失禁:英国国家中风前哨审计 1998-2004 年的结果。
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:6.7
- 作者:
Dan Wilson;D. Lowe;A. Hoffman;A. Rudd;A. Wagg - 通讯作者:
A. Wagg
Peer Group Influences on Learning Outcomes
同侪群体对学习成果的影响
- DOI:
10.1016/j.ijintrel.2022.08.008 - 发表时间:
2017 - 期刊:
- 影响因子:2.8
- 作者:
Dan Wilson - 通讯作者:
Dan Wilson
V-Aware: The Impact of Patient-Centric Vascular Awareness and Education Initiatives
- DOI:
10.1016/j.jvs.2016.06.037 - 发表时间:
2016-09-01 - 期刊:
- 影响因子:
- 作者:
Manish Mehta;Philip Paty;Chetna Prasad;Krishna Martinez-Singh;Dan Wilson;Nadeep Rai;Robert Shang - 通讯作者:
Robert Shang
Optimal phase-based control of strongly perturbed limit cycle oscillators using phase reduction techniques.
使用相位缩减技术对强扰动极限循环振荡器进行基于相位的最佳控制。
- DOI:
10.1103/physreve.109.024223 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Adharaa Neelim Dewanjee;Dan Wilson - 通讯作者:
Dan Wilson
Determining individual phase response curves from aggregate population data.
从总体人口数据确定各个阶段响应曲线。
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Dan Wilson;J. Moehlis - 通讯作者:
J. Moehlis
Dan Wilson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dan Wilson', 18)}}的其他基金
CAREER: A Nonlinear Model Reduction Framework for Oscillatory Systems and Associated Data-Driven Inference Strategies
职业:振荡系统的非线性模型简化框架和相关的数据驱动推理策略
- 批准号:
2140527 - 财政年份:2022
- 资助金额:
$ 32.05万 - 项目类别:
Continuing Grant
相似海外基金
Toward an automated analysis of bifurcations of dynamical systems
动力系统分岔的自动分析
- 批准号:
23K17657 - 财政年份:2023
- 资助金额:
$ 32.05万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Arctic sea ice and bifurcations in a hierarchy of simplemodels (tentative)
简单模型层次结构中的北极海冰和分叉(暂定)
- 批准号:
2277781 - 财政年份:2023
- 资助金额:
$ 32.05万 - 项目类别:
Studentship
Bifurcations in Complex Algebraic Dynamics
复杂代数动力学中的分岔
- 批准号:
2246630 - 财政年份:2023
- 资助金额:
$ 32.05万 - 项目类别:
Standard Grant
Bifurcations of random dynamical systems with bounded noise
具有有限噪声的随机动力系统的分岔
- 批准号:
EP/W009455/1 - 财政年份:2022
- 资助金额:
$ 32.05万 - 项目类别:
Research Grant
Towards universality of delayed and quickened bifurcations in biological signalling
迈向生物信号传导中延迟和加速分歧的普遍性
- 批准号:
EP/W032317/1 - 财政年份:2022
- 资助金额:
$ 32.05万 - 项目类别:
Research Grant
Patterns and Bifurcations in Multiple Timescale Dynamical Systems
多时间尺度动力系统中的模式和分岔
- 批准号:
2204758 - 财政年份:2021
- 资助金额:
$ 32.05万 - 项目类别:
Continuing Grant
Bifurcations: functional differential equations and waves in inhomogeneous media
分岔:非均匀介质中的泛函微分方程和波
- 批准号:
RGPIN-2016-04318 - 财政年份:2021
- 资助金额:
$ 32.05万 - 项目类别:
Discovery Grants Program - Individual
Stability and Bifurcations in Free-Boundary Models of Active Gels
活性凝胶自由边界模型的稳定性和分岔
- 批准号:
2005262 - 财政年份:2020
- 资助金额:
$ 32.05万 - 项目类别:
Standard Grant
Bifurcations: functional differential equations and waves in inhomogeneous media
分岔:非均匀介质中的泛函微分方程和波
- 批准号:
RGPIN-2016-04318 - 财政年份:2019
- 资助金额:
$ 32.05万 - 项目类别:
Discovery Grants Program - Individual
Patterns and Bifurcations in Multiple Timescale Dynamical Systems
多时间尺度动力系统中的模式和分岔
- 批准号:
2016216 - 财政年份:2019
- 资助金额:
$ 32.05万 - 项目类别:
Continuing Grant














{{item.name}}会员




