Collaborative Research: Stability of Nonlinear Wave Structures in Lattices

合作研究:晶格中非线性波结构的稳定性

基本信息

  • 批准号:
    1809074
  • 负责人:
  • 金额:
    $ 8.83万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-09-01 至 2022-08-31
  • 项目状态:
    已结题

项目摘要

The principal investigators of this collaborative research project study the stability of nonlinear waves in lattices. The interplay of spatially discrete structure and nonlinearity in many physical and biological systems, from mechanical metamaterials and nanoelectromechanical devices to biopolymers, often results in formation of nonlinear waveforms that either coherently transport or release energy as they propagate through the system. In particular, recent experimental and theoretical work on granular materials has advanced the understanding of the conditions for existence and properties of a variety of such structures, including traveling pulses and shock waves. However, much less is known about the conditions under which these structures are stable. The goal of this project is to obtain such criteria in a framework that extends earlier work to more general classes of waves and to broader settings that account for the effects of higher dimensions, lattice structure, external driving, and damping. Fundamental understanding of stability criteria for nonlinear waves is important in a number of different fields, including materials science, condensed matter physics, mechanical engineering, and biophysics. The insights provided by this work can be helpful in designing new devices for energy channeling, shock absorption, and vibration mitigation. An integral component of this collaborative project is teaching and training graduate students in the interdisciplinary research area of nonlinear wave phenomena in lattices. To this end, graduate students participate in the research.This project builds on the ongoing joint work of the principal investigators on stability of solitary traveling waves in one-dimensional lattices and its intimate connection to the stability of discrete breathers. This involves developing novel analytical stability criteria, as well as state-of-the-art numerical approaches necessary to extend this framework to broader settings, including two-dimensional and heterogeneous lattices, while considering more general classes of traveling waves. In particular, stability of waveforms with oscillatory tails, such as nanoptera in resonant granular chains and generalized kinks in dislocation models, is investigated. The project involves studying dynamic implications of instability and examining the effects of dissipation, long-range interactions, and external driving. The project's goals also include clarifying the relation of the linear spectra associated with a solitary traveling wave (and their variations at instability critical points) to the corresponding discrete breather Floquet spectra, as well as connecting the stability criteria for such waves to the established functional analytic framework for continuum systems. Graduate students participate in the research.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该合作研究项目的主要研究人员研究晶格中非线性波的稳定性。 在许多物理和生物系统中,从机械超材料和纳米机电设备到生物聚合物,空间离散结构和非线性的相互作用通常导致非线性波形的形成,当它们通过系统传播时,非线性波形相干地传输或释放能量。 特别是,最近的实验和理论工作的粒状材料的存在条件和性能的各种结构,包括行波脉冲和冲击波的理解。 然而,人们对这些结构稳定的条件知之甚少。 该项目的目标是在一个框架中获得这样的标准,该框架将早期的工作扩展到更一般的波类和更广泛的设置,以考虑更高维度,晶格结构,外部驱动和阻尼的影响。 对非线性波稳定性准则的基本理解在许多不同的领域都很重要,包括材料科学、凝聚态物理、机械工程和生物物理。 这项工作所提供的见解可以帮助设计新的能量通道,减震和减振装置。 这个合作项目的一个组成部分是教学和培训研究生在非线性波现象的跨学科研究领域的晶格。 为此目的,研究生参与了研究。该项目建立在主要研究人员正在进行的关于一维晶格中孤立行波稳定性及其与离散呼吸子稳定性的密切联系的联合工作基础上。 这涉及到开发新的分析稳定性标准,以及国家的最先进的数值方法,必要的扩展这一框架,以更广泛的设置,包括二维和异质晶格,同时考虑更一般的类行波。 特别是,振荡的尾巴,如纳米翅共振颗粒链和广义扭结位错模型的波形的稳定性进行了研究。 该项目涉及研究不稳定性的动态影响,并检查耗散,长程相互作用和外部驱动的影响。 该项目的目标还包括澄清与孤立行波相关的线性谱(及其在不稳定临界点的变化)与相应的离散呼吸Floquet谱的关系,以及将此类波的稳定性标准与连续系统的既定功能分析框架相连接。 该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(61)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Stationary multi-kinks in the discrete sine-Gordon equation
离散正弦戈登方程中的稳态多扭结
  • DOI:
    10.1088/1361-6544/ac3f8d
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Parker, Ross;Kevrekidis, P G;Aceves, Alejandro
  • 通讯作者:
    Aceves, Alejandro
Pairwise interactions of ring dark solitons with vortices and other rings: Stationary states, stability features, and nonlinear dynamics
  • DOI:
    10.1103/physreva.104.023314
  • 发表时间:
    2021-05
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Wenlong Wang;T. Kolokolnikov;D. Frantzeskakis;R. Carretero-Gonz'alez;P. Kevrekidis
  • 通讯作者:
    Wenlong Wang;T. Kolokolnikov;D. Frantzeskakis;R. Carretero-Gonz'alez;P. Kevrekidis
Unstable dynamics of solitary traveling waves in a lattice with long-range interactions
具有长程相互作用的晶格中孤立行波的不稳定动力学
  • DOI:
    10.1016/j.wavemoti.2021.102836
  • 发表时间:
    2021-03
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    H. Duran;H. Xu;P. G. Kevrekidis;A. Vainchtein
  • 通讯作者:
    A. Vainchtein
Exploring critical points of energy landscapes: From low-dimensional examples to phase field crystal PDEs
  • DOI:
    10.1016/j.cnsns.2020.105679
  • 发表时间:
    2020-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    P. Subramanian;I. Kevrekidis;P. Kevrekidis
  • 通讯作者:
    P. Subramanian;I. Kevrekidis;P. Kevrekidis
Kink dynamics in a nonlinear beam model
非线性梁模型中的扭结动力学
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Panayotis Kevrekidis其他文献

Panayotis Kevrekidis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Panayotis Kevrekidis', 18)}}的其他基金

Collaborative Research: Collapse, Rogue Waves, and their Applications: From Theory to Computation and Beyond
合作研究:塌陷、异常波浪及其应用:从理论到计算及其他
  • 批准号:
    2204702
  • 财政年份:
    2022
  • 资助金额:
    $ 8.83万
  • 项目类别:
    Standard Grant
Collaborative Research: From Quantum Droplets & Spinor Solitons to Vortex Knots & Topological States: Beyond the Standard Mean-Field in Atomic BECs
合作研究:来自量子液滴
  • 批准号:
    2110030
  • 财政年份:
    2021
  • 资助金额:
    $ 8.83万
  • 项目类别:
    Standard Grant
OP: Collaborative Research: Non-Hamiltonian Wave Dynamics in Atomic & Optical Models
OP:合作研究:原子中的非哈密尔顿波动力学
  • 批准号:
    1602994
  • 财政年份:
    2016
  • 资助金额:
    $ 8.83万
  • 项目类别:
    Continuing Grant
Collaborative Research: New Directions in Atomic Bose-Einstein Condensates
合作研究:原子玻色-爱因斯坦凝聚态的新方向
  • 批准号:
    1312856
  • 财政年份:
    2013
  • 资助金额:
    $ 8.83万
  • 项目类别:
    Standard Grant
DynSyst_Special_Topics:Collaborative Research: Fundamental and Applied Dynamics of Granular Crystals: Disorder, Localization and Energy Harvesting
DynSyst_Special_Topics:合作研究:粒状晶体的基础和应用动力学:无序、局域化和能量收集
  • 批准号:
    1000337
  • 财政年份:
    2010
  • 资助金额:
    $ 8.83万
  • 项目类别:
    Standard Grant
CAREER: Solitons in Bose-Einstein Condensates: Generation, Manipulation and Pattern Formation
职业:玻色-爱因斯坦凝聚中的孤子:生成、操纵和模式形成
  • 批准号:
    0349023
  • 财政年份:
    2004
  • 资助金额:
    $ 8.83万
  • 项目类别:
    Standard Grant
Discrete Solitons: Methods, Theory and Applications
离散孤子:方法、理论和应用
  • 批准号:
    0204585
  • 财政年份:
    2002
  • 资助金额:
    $ 8.83万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: NSFDEB-NERC: Warming's silver lining? Thermal compensation at multiple levels of organization may promote stream ecosystem stability in response to drought
合作研究:NSFDEB-NERC:变暖的一线希望?
  • 批准号:
    2312706
  • 财政年份:
    2024
  • 资助金额:
    $ 8.83万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
  • 批准号:
    2344215
  • 财政年份:
    2024
  • 资助金额:
    $ 8.83万
  • 项目类别:
    Standard Grant
Collaborative Research: Sediment and Stability: Quantifying the Effect of Moraine Building on Greenland Tidewater Glaciers
合作研究:沉积物和稳定性:量化冰碛建筑对格陵兰潮水冰川的影响
  • 批准号:
    2234522
  • 财政年份:
    2024
  • 资助金额:
    $ 8.83万
  • 项目类别:
    Standard Grant
Collaborative Research: Sediment and Stability: Quantifying the Effect of Moraine Building on Greenland Tidewater Glaciers
合作研究:沉积物和稳定性:量化冰碛建筑对格陵兰潮水冰川的影响
  • 批准号:
    2234523
  • 财政年份:
    2024
  • 资助金额:
    $ 8.83万
  • 项目类别:
    Standard Grant
Collaborative Research: Sediment and Stability: Quantifying the Effect of Moraine Building on Greenland Tidewater Glaciers
合作研究:沉积物和稳定性:量化冰碛建筑对格陵兰潮水冰川的影响
  • 批准号:
    2234524
  • 财政年份:
    2024
  • 资助金额:
    $ 8.83万
  • 项目类别:
    Standard Grant
Collaborative Research: NSFDEB-NERC: Warming's silver lining? Thermal compensation at multiple levels of organization may promote stream ecosystem stability in response to drought
合作研究:NSFDEB-NERC:变暖的一线希望?
  • 批准号:
    2312707
  • 财政年份:
    2024
  • 资助金额:
    $ 8.83万
  • 项目类别:
    Standard Grant
Collaborative Research: Sediment and Stability: Quantifying the Effect of Moraine Building on Greenland Tidewater Glaciers
合作研究:沉积物和稳定性:量化冰碛建筑对格陵兰潮水冰川的影响
  • 批准号:
    2234520
  • 财政年份:
    2024
  • 资助金额:
    $ 8.83万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
  • 批准号:
    2344214
  • 财政年份:
    2024
  • 资助金额:
    $ 8.83万
  • 项目类别:
    Standard Grant
Collaborative Research: Evaluating the Unique Composition, Environmental Stability, and Export of Dissolved Pyrogenic Organic Matter in Wildfire-Impacted Watersheds
合作研究:评估受野火影响的流域中溶解的热解有机物的独特组成、环境稳定性和输出
  • 批准号:
    2326437
  • 财政年份:
    2023
  • 资助金额:
    $ 8.83万
  • 项目类别:
    Standard Grant
Collaborative Research: BoCP-Implementation: Biodiversity and stability on a changing planet: plant traits and interactions that stabilize or destabilize ecosystems and populations
合作研究:BoCP-实施:不断变化的星球上的生物多样性和稳定性:稳定或破坏生态系统和种群的植物性状和相互作用
  • 批准号:
    2224853
  • 财政年份:
    2023
  • 资助金额:
    $ 8.83万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了