Collaborative Research: Collapse, Rogue Waves, and their Applications: From Theory to Computation and Beyond
合作研究:塌陷、异常波浪及其应用:从理论到计算及其他
基本信息
- 批准号:2204702
- 负责人:
- 金额:$ 21.93万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The project aims to further the understanding of collapse-type phenomena and rogue waves in systems that are modeled by nonlinear ordinary, partial, and lattice differential equations. Collapse-type phenomena are mathematically described by solutions that remain self-similar as some of their attributes become unbounded in finite time. Self-similarity refers to preservation of shape when an appropriate scaling of space and time and solution amplitude is employed. Collapse phenomena are relevant to the focusing of light beams in optics and to atomic matter waves. Rogue waves have a characteristic length or time scale and extreme amplitudes; they are important in subjects such as hydrodynamics, nonlinear optics, and atomic and plasma physics. Using dynamical systems and computational techniques, this project aims to reformulate the underlying models and provide a unified approach to studying both collapse phenomena and rogue waves by treating the relevant patterns as self-similar solutions. The project is expected to provide insights on the mechanisms and reduced mathematical descriptions of collapse phenomena in some of the prototypical mathematical models that feature these potentially catastrophic focusing events, as well as on the formation, prediction, and analysis of extreme waves in both continuum and spatially discrete systems. The project will offer research training opportunities for students. The project will explore a recently derived normal form for the study of self-focusing waves of the central dispersive wave model of the nonlinear Schrödinger equation and will seek generalizations for related models (such as the Korteweg-de Vries equation). Stability analysis of such collapsing waves is expected to shed light on the spectral properties and potential instabilities of such systems, their connection to symmetries, their implications for the dynamics in different settings (supercritical, critical, and subcritical), and their reinterpretation in the original "non-exploding'' frame. A second focus of the project will be the study of rogue waves from a dynamical systems viewpoint, including characterization of stability via limits of time-periodic solutions and rogue waves in higher-order dispersion settings. The theoretical analysis will be corroborated by numerical simulations involving deflation-based fixed-point techniques and pseudo-arclength continuation, as well as state-of-the-art contour integral-based eigenvalue solvers. Collaboration with experimental groups performing laboratory experiments will also be sought.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目旨在进一步了解由非线性常微分方程、偏微分方程和格点微分方程建模的系统中的湍流型现象和流氓波。崩溃型现象在数学上是由解描述的,这些解在有限时间内保持自相似,因为它们的一些属性变得无界。自相似性是指当采用适当的空间和时间缩放以及解振幅时形状的保持。坍缩现象与光学中光束的聚焦和原子物质波有关。无规则波具有特征长度或时间尺度和极端振幅;它们在流体力学、非线性光学、原子和等离子体物理等学科中很重要。利用动力系统和计算技术,该项目旨在重新制定基础模型,并通过将相关模式视为自相似解决方案,提供一种统一的方法来研究崩溃现象和流氓波。该项目预计将提供的机制和减少的数学描述的崩溃现象的一些原型的数学模型,功能这些潜在的灾难性的聚焦事件,以及在连续和空间离散系统的极端波的形成,预测和分析的见解。该项目将为学生提供研究培训机会。该项目将探讨最近导出的标准形式,用于研究非线性薛定谔方程中心色散波模型的自聚焦波,并将寻求相关模型(如Korteweg-de弗里斯方程)的推广。这种坍缩波的稳定性分析有望揭示这种系统的光谱特性和潜在的不稳定性,它们与对称性的联系,它们对不同环境(超临界,临界和亚临界)中动力学的影响,以及它们在原始“非爆炸”框架中的重新解释。该项目的第二个重点将是从动力系统的角度研究流氓波,包括通过时间周期解的限制和高阶色散设置中的流氓波来表征稳定性。理论分析将得到证实的数值模拟,涉及放气为基础的定点技术和伪弧长延续,以及国家的最先进的轮廓积分为基础的本征值求解器。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(15)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Control of Dy164 Bose-Einstein condensate phases and dynamics with dipolar anisotropy
- DOI:10.1103/physrevresearch.4.043124
- 发表时间:2022-05
- 期刊:
- 影响因子:4.2
- 作者:S. Halder;K. Mukherjee;S. Mistakidis;S. Das;P. Kevrekidis;P. Panigrahi;Soumya Majumder;H. Sadeghpour
- 通讯作者:S. Halder;K. Mukherjee;S. Mistakidis;S. Das;P. Kevrekidis;P. Panigrahi;Soumya Majumder;H. Sadeghpour
How close are integrable and nonintegrable models: A parametric case study based on the Salerno model
可积模型和不可积模型有多接近:基于萨莱诺模型的参数化案例研究
- DOI:10.1103/physreve.107.024202
- 发表时间:2023
- 期刊:
- 影响因子:2.4
- 作者:Mithun, Thudiyangal;Maluckov, Aleksandra;Mančić, Ana;Khare, Avinash;Kevrekidis, Panayotis G.
- 通讯作者:Kevrekidis, Panayotis G.
An Ising machine based on networks of subharmonic electrical resonators
基于分谐波电谐振器网络的伊辛机
- DOI:10.1038/s42005-022-01111-x
- 发表时间:2022
- 期刊:
- 影响因子:5.5
- 作者:English, L. Q.;Zampetaki, A. V.;Kalinin, K. P.;Berloff, N. G.;Kevrekidis, P. G.
- 通讯作者:Kevrekidis, P. G.
Solitary waves in a quantum droplet-bearing system
- DOI:10.1103/physreva.107.063308
- 发表时间:2023-02
- 期刊:
- 影响因子:2.9
- 作者:G. Katsimiga;S. Mistakidis;G. N. Koutsokostas;D. Frantzeskakis;R. Carretero-González;P. Kevrekidis
- 通讯作者:G. Katsimiga;S. Mistakidis;G. N. Koutsokostas;D. Frantzeskakis;R. Carretero-González;P. Kevrekidis
A spectral analysis of the nonlinear Schrödinger equation in the co-exploding frame
共爆框架下非线性薛定谔方程的谱分析
- DOI:10.1016/j.physd.2022.133396
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Chapman, S.J.;Kavousanakis, M.;Charalampidis, E.G.;Kevrekidis, I.G.;Kevrekidis, P.G.
- 通讯作者:Kevrekidis, P.G.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Panayotis Kevrekidis其他文献
Panayotis Kevrekidis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Panayotis Kevrekidis', 18)}}的其他基金
Collaborative Research: From Quantum Droplets & Spinor Solitons to Vortex Knots & Topological States: Beyond the Standard Mean-Field in Atomic BECs
合作研究:来自量子液滴
- 批准号:
2110030 - 财政年份:2021
- 资助金额:
$ 21.93万 - 项目类别:
Standard Grant
Collaborative Research: Stability of Nonlinear Wave Structures in Lattices
合作研究:晶格中非线性波结构的稳定性
- 批准号:
1809074 - 财政年份:2018
- 资助金额:
$ 21.93万 - 项目类别:
Standard Grant
OP: Collaborative Research: Non-Hamiltonian Wave Dynamics in Atomic & Optical Models
OP:合作研究:原子中的非哈密尔顿波动力学
- 批准号:
1602994 - 财政年份:2016
- 资助金额:
$ 21.93万 - 项目类别:
Continuing Grant
Collaborative Research: New Directions in Atomic Bose-Einstein Condensates
合作研究:原子玻色-爱因斯坦凝聚态的新方向
- 批准号:
1312856 - 财政年份:2013
- 资助金额:
$ 21.93万 - 项目类别:
Standard Grant
DynSyst_Special_Topics:Collaborative Research: Fundamental and Applied Dynamics of Granular Crystals: Disorder, Localization and Energy Harvesting
DynSyst_Special_Topics:合作研究:粒状晶体的基础和应用动力学:无序、局域化和能量收集
- 批准号:
1000337 - 财政年份:2010
- 资助金额:
$ 21.93万 - 项目类别:
Standard Grant
CAREER: Solitons in Bose-Einstein Condensates: Generation, Manipulation and Pattern Formation
职业:玻色-爱因斯坦凝聚中的孤子:生成、操纵和模式形成
- 批准号:
0349023 - 财政年份:2004
- 资助金额:
$ 21.93万 - 项目类别:
Standard Grant
Discrete Solitons: Methods, Theory and Applications
离散孤子:方法、理论和应用
- 批准号:
0204585 - 财政年份:2002
- 资助金额:
$ 21.93万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427233 - 财政年份:2024
- 资助金额:
$ 21.93万 - 项目类别:
Standard Grant
Collaborative Research: Prospects and limitations of predicting a potential collapse of the Atlantic meridional overturning circulation
合作研究:预测大西洋经向翻转环流潜在崩溃的前景和局限性
- 批准号:
2343204 - 财政年份:2024
- 资助金额:
$ 21.93万 - 项目类别:
Standard Grant
Collaborative Research: Resilience, Experimentation, and Collapse in Small-Scale Fisheries
合作研究:小规模渔业的恢复力、实验和崩溃
- 批准号:
2312166 - 财政年份:2024
- 资助金额:
$ 21.93万 - 项目类别:
Standard Grant
Collaborative Research: RUI: Topological methods for analyzing shifting patterns and population collapse
合作研究:RUI:分析变化模式和人口崩溃的拓扑方法
- 批准号:
2327892 - 财政年份:2024
- 资助金额:
$ 21.93万 - 项目类别:
Standard Grant
Collaborative Research: RUI: Topological methods for analyzing shifting patterns and population collapse
合作研究:RUI:分析变化模式和人口崩溃的拓扑方法
- 批准号:
2327893 - 财政年份:2024
- 资助金额:
$ 21.93万 - 项目类别:
Standard Grant
Collaborative Research: Prospects and limitations of predicting a potential collapse of the Atlantic meridional overturning circulation
合作研究:预测大西洋经向翻转环流潜在崩溃的前景和局限性
- 批准号:
2343203 - 财政年份:2024
- 资助金额:
$ 21.93万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427232 - 财政年份:2024
- 资助金额:
$ 21.93万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427231 - 财政年份:2024
- 资助金额:
$ 21.93万 - 项目类别:
Standard Grant
Collaborative Research: Resilience, Experimentation, and Collapse in Small-Scale Fisheries
合作研究:小规模渔业的恢复力、实验和崩溃
- 批准号:
2312167 - 财政年份:2024
- 资助金额:
$ 21.93万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
- 批准号:
2312841 - 财政年份:2023
- 资助金额:
$ 21.93万 - 项目类别:
Standard Grant














{{item.name}}会员




