Exploiting Luminescence Emissions of Solar Cells for Internet-of-Things Applications
利用太阳能电池的发光进行物联网应用
基本信息
- 批准号:1809637
- 负责人:
- 金额:$ 45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-01 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In this project, a new type of electronic device that uses light and solar cells to communicate wirelessly will be developed. An interesting fact about solar cells is that the same physical principle that allows solar cells to absorb photons also allows them to emit photons when excited by light or electricity. This phenomenon is known as luminescence. For most solar cells, this bidirectional process is not symmetric. That is, photon absorption is more efficient than photon emission. This is the case for silicon solar cells. There are other materials, however, such as Gallium Arsenide (GaAs) that are efficient at both absorbing and emitting photons. In this project the light emitted by GaAs solar cells will be modulated to transmit information wirelessly. Devices that use this approach will be able to use their solar cells as optical antennas that transmit and receive information optically while capturing energy from their environment to power themselves. The proposed technology will provide a new means of communication for devices connected to the Internet-of-Things (IoT). The IoT extends the Internet to everyday objects in a seamless manner with the goal of enhancing our lives. For instance, the proposed devices can be used in smart labels to monitor the temperature of perishable goods as they move through the supply chain. They can also be used in smart homes and smart factories to connect appliances and tools to the IoT. Other applications include environmental and agricultural monitoring. This project will advance the field of electronics and communications by providing a new class of wireless devices. This project will also enhance the education of American college and pre-college students by involving them in research activities to stimulate their interests in Science, Technology, Engineering, and Mathematics (STEM).The objective of this project is to take advantage of the luminescence emissions of GaAs solar cells to create a new type of wireless device that transmits information optically. Previously, photo-luminescence and electro-luminescence emissions were employed to characterize defects and materials parameters of solar cells. Here, luminescence emissions are exploited for wireless communications by modulating their intensities. Hence, this project has the potential to start a new area of research in optical communications in which light is used to convey energy and information to and from passive devices. Given that these devices will employ a new approach to the transmission of information, the project will address several fundamental questions and technical challenges to make the proposed concept viable. In particular, this project will address the following questions: 1) how fast and how far can information be transmitted using modulated luminescence emissions from high-efficiency solar cells 2) what is the best scheme for luminescence modulation 3) what circuit architectures and implementations will yield the lowest power consumption These questions will be studied and answered through the following research tasks: 1) characterizing solar cells as transmitters and receivers of information; 2) selecting suitable modulation schemes; 3) developing configurable hardware platform to validate selected luminescence modulation schemes; 4) developing a low-power platform to demonstrate self-powered operation of the proposed devices; 5) testing the hardware platforms. The proposed research will result in a new wireless technology for IoT applications. Advantages of this technology over radio-frequency wireless devices include reduced electromagnetic interference and avoidance of heavily-used and congested radio frequency spectrum. Other advantages include the ability of precise transmitter localization using camera-based receivers and the possibility to work underwater. As such, the proposed technology has the potential for creating new commercial applications and business opportunities.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在该项目中,将开发一种利用光和太阳能电池进行无线通信的新型电子设备。关于太阳能电池的一个有趣的事实是,允许太阳能电池吸收光子的相同物理原理也允许它们在被光或电激发时发射光子。这种现象被称为发光。对于大多数太阳能电池,这种双向过程是不对称的。也就是说,光子吸收比光子发射更有效。硅太阳能电池就是这种情况。然而,还有其他材料,如砷化镓(GaAs),在吸收和发射光子方面都很有效。在这个项目中,GaAs太阳能电池发出的光将被调制以无线传输信息。使用这种方法的设备将能够使用太阳能电池作为光学天线,以光学方式传输和接收信息,同时从环境中捕获能量为自己供电。拟议的技术将为连接到物联网(IoT)的设备提供一种新的通信手段。物联网以无缝的方式将互联网扩展到日常物品,旨在改善我们的生活。例如,所提出的设备可以用于智能标签,以监测易腐货物在供应链中移动时的温度。它们还可用于智能家居和智能工厂,将设备和工具连接到物联网。其他应用包括环境和农业监测。该项目将通过提供一种新的无线设备来推动电子和通信领域的发展。该项目还将通过让美国大学生和大学预科生参与研究活动来提高他们对科学、技术、工程和数学(STEM)的兴趣,从而加强他们的教育。该项目的目标是利用砷化镓太阳能电池的发光发射,创造一种新型的无线设备,以光学方式传输信息。以前,光致发光和电致发光发射被用来表征太阳能电池的缺陷和材料参数。在这里,通过调制发光发射的强度,发光发射被用于无线通信。因此,该项目有可能开创光通信研究的新领域,其中光用于向无源器件传递能量和信息。鉴于这些设备将采用一种新的信息传输方法,该项目将解决几个基本问题和技术挑战,使拟议的概念可行。特别是,该项目将解决以下问题:1)使用来自高效太阳能电池的调制发光发射,信息传输的速度和距离有多快2)发光调制的最佳方案是什么3)什么电路架构和实现将产生最低的功耗这些问题将通过以下研究任务进行研究和回答:1)将太阳能电池表征为信息的发射器和接收器; 2)选择合适的调制方案; 3)开发可配置的硬件平台以验证所选择的发光调制方案; 4)开发低功率平台以演示所提出的设备的自供电操作; 5)测试硬件平台。拟议的研究将为物联网应用带来一种新的无线技术。与射频无线设备相比,该技术的优势包括减少电磁干扰,避免频繁使用和拥挤的射频频谱。其他优点包括使用基于相机的接收器精确定位发射器的能力以及水下工作的可能性。因此,拟议的技术具有创造新的商业应用和商业机会的潜力。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
An Optical Wireless Temperature Sensor
光学无线温度传感器
- DOI:10.1109/sensors43011.2019.8956813
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Fan, Xiaozhe;Lee, Seungjin;Leon-Salas, Walter Daniel
- 通讯作者:Leon-Salas, Walter Daniel
Wireless Optical Communications with GaAs Solar Cells
使用砷化镓太阳能电池进行无线光通信
- DOI:10.1364/fio.2019.jtu4a.83
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Leon-Salas, Walter D.;Fan, Xiaozhe;Zhang, Yizhou;Kadirvelu, Sindhubala
- 通讯作者:Kadirvelu, Sindhubala
Solar Cell Photo-Luminescence Modulation for Optical Frequency Identification Devices
用于光学频率识别装置的太阳能电池光致发光调制
- DOI:10.1109/tcsi.2018.2867445
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Leon-Salas, Walter Daniel;Fan, Xiaozhe
- 通讯作者:Fan, Xiaozhe
A Solar Cell Photo-Luminescence Modulator for Optical Communications
用于光通信的太阳能电池光致发光调制器
- DOI:10.1109/tcsii.2022.3158594
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Leon-Salas, Walter D.;Fan, Xiaozhe;Vizcardo, Miguel;Postigo-Malaga, Mauricio
- 通讯作者:Postigo-Malaga, Mauricio
Noise Analysis of a Solar Cell-Based Receiver for Simultaneous Energy Harvesting and Data Reception
用于同步能量收集和数据接收的太阳能电池接收器的噪声分析
- DOI:10.1109/iscas48785.2022.9937528
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Dharanipragada, Archana;Leon-Salas, Walter D.
- 通讯作者:Leon-Salas, Walter D.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Walter Leon-Salas其他文献
Walter Leon-Salas的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Walter Leon-Salas', 18)}}的其他基金
CAREER: Toward hybrid energy-harvesting image sensors
职业:走向混合能量收集图像传感器
- 批准号:
1261638 - 财政年份:2012
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
CAREER: Toward hybrid energy-harvesting image sensors
职业:走向混合能量收集图像传感器
- 批准号:
1055169 - 财政年份:2011
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
MRI Development: Heterogeneous, Autonomic Wireless Control Networks for Scalable Cyber-Physical Systems
MRI 开发:用于可扩展网络物理系统的异构自主无线控制网络
- 批准号:
0923518 - 财政年份:2009
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
相似海外基金
NSF Convergence Accelerator Track L: Smartphone Time-Resolved Luminescence Imaging and Detection (STRIDE) for Point-of-Care Diagnostics
NSF 融合加速器轨道 L:用于即时诊断的智能手机时间分辨发光成像和检测 (STRIDE)
- 批准号:
2344476 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Development of new molecular self-temperature sensing techniques using luminescence-absorption hybrid thermometry
利用发光-吸收混合测温法开发新型分子自温度传感技术
- 批准号:
24K17691 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
TS: The University of Texas at Arlington Luminescence Laboratory
TS:德克萨斯大学阿灵顿发光实验室
- 批准号:
2350175 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
RII Track-4:@NASA: Process-Structure-Property Relationship of the Hybrid Manufactured Multifunctional Mechano-Luminescence-Optoelectronic Fibers
RII Track-4:@NASA:混合制造的多功能机械-发光-光电纤维的工艺-结构-性能关系
- 批准号:
2327493 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
High color purity and multicolor luminescence based on precise synthesis and electronic structure design of multinary quantum dots
基于多元量子点的精确合成和电子结构设计的高色纯度和多色发光
- 批准号:
23H01786 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Enhanced Circularly Polarized Luminescence of Single Molecular Layers
单分子层的增强圆偏振发光
- 批准号:
22KF0260 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Time-of-flight positron emission tomography using Cerenkov luminescence in bismuth germanate
使用锗酸铋中的切伦科夫发光进行飞行时间正电子发射断层扫描
- 批准号:
10766104 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Cherenkov luminescence mediated excitation of discrete lanthanide optical probes
切伦科夫发光介导的离散镧系元素光学探针的激发
- 批准号:
10876727 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Small animal tomographic imager for luminescence, fluorescence and CT
用于发光、荧光和 CT 的小动物断层成像仪
- 批准号:
507944703 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Major Research Instrumentation
Preparation of Axially Chiral Molecules with Circularly Polarized Luminescence: Derived from pai-pai Interaction of Heteroaromatic Rings
具有圆偏振发光的轴向手性分子的制备:源自杂芳环的排排相互作用
- 批准号:
23K17922 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)