NSF-BSF: A Self-sustaining Wind Energy Extraction Technique (SWEET) Using Multi-level Control Design Methods
NSF-BSF:采用多级控制设计方法的自持式风能提取技术(SWEET)
基本信息
- 批准号:1809790
- 负责人:
- 金额:$ 27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-01 至 2024-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Oscillating foil-based wind harvesting systems utilize the phenomenon of limit-cycle oscillation (or constrained flutter) to generate power, and these systems are capable of generating enough power to support the average household electricity usage of 900 KWH per month. In this project, researchers aim to address one of the most challenging aspects of this renewable energy technology, in which significant gaps still exist in understanding methods to actively maintain limit cycle oscillations and achieve continual power generation in the realistic, time-varying operational environments that foils would encounter in Nature. To this end, the project will investigate new active flow control methods, which are shown to achieve well-controlled flutter-induced wind energy extraction characteristics in realistic operating environments. To achieve the highest possible net power output, the project researchers will employ low-auxiliary power actuators embedded in the foil, which are known to be effective in conventional flow control applications. The proposed closed-loop active flow control systems will be tested and refined using high-fidelity computational fluid dynamics simulations and experimental wind tunnel tests. The developed active flow control methods could be successfully employed in further optimization studies of the wind energy extraction technology, which could offer several potential benefits (including low noise, low wind speed requirements, and compactness), compared to the traditional wind turbine designs. The project further offers the potential to enhance the practical performance of oscillating foil-based wind harvesting systems, thus making them more amenable to widespread implementation. The project integrates research and education through the creation of a multidisciplinary research and development group, in which aerospace engineering and engineering physics undergraduate and graduate students work in teams to develop conceptual designs for physics-based control methods for wind energy harvesting systems. Project team leaders will follow the tradition of promoting equal opportunities for underrepresented groups when nominating students for the project.To perform the proposed investigations, control-oriented, reduced-order mathematical models will first be formulated for oscillating foil-based wind energy harvesting systems, which incorporate detailed dynamic models of the power generation system, foil-mounted flow actuators, fluid flow dynamics, and the aeroelastic effects of the oscillating foil. New methods of nonlinear, closed-loop active flow control will then be developed and rigorously analyzed, which are proven to influence the foil-surface fluid flow velocity/pressure field in such a way that the energy harvested by the oscillating foil is maximized over a wide range of wind velocities and unexpected gusts. The project will utilize detailed mathematical analytical methods to investigate and rigorously quantify the range of operating conditions within which the newly developed active flow control systems can reliably maintain foil oscillations. An additional aim of this research project is to develop feedback control designs that are practically implementable, requiring no function approximators, minimal computational complexity, and few sensor measurements. Oscillating foil-based wind harvesting systems promise performance levels comparable to that of rotary wind turbine systems, while benefiting from low wind-speed environments. To design reliable and practical oscillating foil-based energy generation systems, detailed mathematical modeling and active control of the fluid-structure interaction dynamics must be rigorously investigated and clearly understood. The experimental validation aspect of the project will be performed in collaboration with Dr. Oksana Stalnov, of the Technion-Israel Institute of Technology in Haifa, Israel, using their wind tunnel facility.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
基于摆动翼的风力收集系统利用极限周期振荡(或约束颤振)现象来发电,并且这些系统能够产生足够的电力来支持每月900 KWH的平均家庭用电量。在这个项目中,研究人员的目标是解决这种可再生能源技术最具挑战性的方面之一,其中在理解方法方面仍然存在重大差距,以积极保持极限循环振荡,并在现实的,时变的操作环境中实现连续发电,箔将在自然界中遇到。为此,该项目将研究新的主动流量控制方法,这些方法已被证明可以在现实的运行环境中实现良好控制的颤振诱导风能提取特性。为了实现尽可能高的净功率输出,项目研究人员将采用嵌入箔中的低辅助功率致动器,这在传统的流量控制应用中是有效的。建议的闭环主动流量控制系统将使用高保真计算流体动力学模拟和实验风洞测试进行测试和改进。开发的主动流动控制方法可以成功地用于风能提取技术的进一步优化研究,与传统的风力涡轮机设计相比,该技术可以提供几个潜在的好处(包括低噪声、低风速要求和紧凑性)。该项目进一步提供了提高基于摆动箔的风力收集系统的实际性能的潜力,从而使它们更适合广泛实施。该项目通过创建一个多学科研究和开发小组,将研究和教育结合起来,其中航空航天工程和工程物理本科生和研究生组成团队,为风能收集系统开发基于物理的控制方法的概念设计。项目小组负责人在提名学生参加项目时,将遵循促进代表性不足群体平等机会的传统。为了进行拟议的调查,首先将为基于摆动翼的风能收集系统制定面向控制的降阶数学模型,该模型将包括发电系统的详细动态模型,翼安装的流量致动器,流体流动动力学,以及摆动翼的气动弹性效应。然后,将开发和严格分析非线性闭环主动流量控制的新方法,这些方法被证明会影响翼面流体流速/压力场,从而使振荡翼收获的能量在很宽的风速和意外阵风范围内最大化。该项目将利用详细的数学分析方法来研究和严格量化新开发的主动流量控制系统能够可靠地保持翼型振荡的操作条件范围。本研究项目的另一个目的是开发实际可实现的反馈控制设计,不需要函数逼近器,最小的计算复杂性和很少的传感器测量。基于摆动翼的风力收获系统承诺与旋转风力涡轮机系统相当的性能水平,同时受益于低风速环境。为了设计可靠和实用的基于振动箔的能量产生系统,必须严格研究和清楚地理解流体-结构相互作用动力学的详细数学建模和主动控制。该项目的实验验证方面将与以色列海法理工学院的Oksana Stalnov博士合作,使用他们的风洞设施进行。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Sliding Mode Observer-based Limit Cycle Oscillation Suppression using a Robust Active Flow Control Technique
- DOI:10.1109/ccta49430.2022.9966001
- 发表时间:2022-08
- 期刊:
- 影响因子:0
- 作者:Krishna Bhavithavya Kidambi;Madhur Tiwari;A. Jayaprakash;W. MacKunis;V. Golubev
- 通讯作者:Krishna Bhavithavya Kidambi;Madhur Tiwari;A. Jayaprakash;W. MacKunis;V. Golubev
Reduced-order Dynamic Modeling and Robust Nonlinear Control of Fluid Flow Velocity Fields
- DOI:10.1109/cdc45484.2021.9683068
- 发表时间:2021-12
- 期刊:
- 影响因子:0
- 作者:A. Jayaprakash;W. MacKunis;V. Golubev;O. Stalnov
- 通讯作者:A. Jayaprakash;W. MacKunis;V. Golubev;O. Stalnov
Limit Cycle Oscillation Suppression Using a Closed-loop Nonlinear Active Flow Control Technique
- DOI:10.1109/cdc42340.2020.9303839
- 发表时间:2020-12
- 期刊:
- 影响因子:0
- 作者:Krishna Bhavithavya Kidambi;W. MacKunis;A. Jayaprakash
- 通讯作者:Krishna Bhavithavya Kidambi;W. MacKunis;A. Jayaprakash
A sliding mode estimation method for fluid flow fields using a differential inclusions-based analysis
- DOI:10.1080/00207179.2020.1713403
- 发表时间:2020-01
- 期刊:
- 影响因子:2.1
- 作者:Krishna Bhavithavya Kidambi;W. MacKunis;S. Drakunov;V. Golubev
- 通讯作者:Krishna Bhavithavya Kidambi;W. MacKunis;S. Drakunov;V. Golubev
Sliding mode estimation and closed‐loop active flow control under actuator uncertainty
- DOI:10.1002/rnc.5129
- 发表时间:2020-08
- 期刊:
- 影响因子:3.9
- 作者:Krishna Bhavithavya Kidambi;W. MacKunis;S. Drakunov;V. Golubev
- 通讯作者:Krishna Bhavithavya Kidambi;W. MacKunis;S. Drakunov;V. Golubev
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
William MacKunis其他文献
William MacKunis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('William MacKunis', 18)}}的其他基金
Nonlinear Flow and Flight Tracking Control Methods for Unmanned Aerial Vehicles Using Microjet Actuators
使用微射流执行器的无人机非线性流动和飞行跟踪控制方法
- 批准号:
1335405 - 财政年份:2013
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
相似国自然基金
枯草芽孢杆菌BSF01降解高效氯氰菊酯的种内群体感应机制研究
- 批准号:31871988
- 批准年份:2018
- 资助金额:59.0 万元
- 项目类别:面上项目
基于掺硼直拉单晶硅片的Al-BSF和PERC太阳电池光衰及其抑制的基础研究
- 批准号:61774171
- 批准年份:2017
- 资助金额:63.0 万元
- 项目类别:面上项目
B细胞刺激因子-2(BSF-2)与自身免疫病的关系
- 批准号:38870708
- 批准年份:1988
- 资助金额:3.0 万元
- 项目类别:面上项目
相似海外基金
NSF-BSF: Many-Body Physics of Quantum Computation
NSF-BSF:量子计算的多体物理学
- 批准号:
2338819 - 财政年份:2024
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
NSF-BSF: Towards a Molecular Understanding of Dynamic Active Sites in Advanced Alkaline Water Oxidation Catalysts
NSF-BSF:高级碱性水氧化催化剂动态活性位点的分子理解
- 批准号:
2400195 - 财政年份:2024
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Collaborative Research: NSF-BSF: Under Pressure: The evolution of guard cell turgor and the rise of the angiosperms
合作研究:NSF-BSF:压力之下:保卫细胞膨压的进化和被子植物的兴起
- 批准号:
2333889 - 财政年份:2024
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Collaborative Research: NSF-BSF: Under Pressure: The evolution of guard cell turgor and the rise of the angiosperms
合作研究:NSF-BSF:压力之下:保卫细胞膨压的进化和被子植物的兴起
- 批准号:
2333888 - 财政年份:2024
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
- 批准号:
2321481 - 财政年份:2024
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
- 批准号:
2321480 - 财政年份:2024
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
NSF-BSF: Collaborative Research: Solids and reactive transport processes in sewer systems of the future: modeling and experimental investigation
NSF-BSF:合作研究:未来下水道系统中的固体和反应性输送过程:建模和实验研究
- 批准号:
2134594 - 财政年份:2024
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
NSF-BSF Combinatorial Set Theory and PCF
NSF-BSF 组合集合论和 PCF
- 批准号:
2400200 - 财政年份:2024
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
NSF-BSF: CDS&E: Tensor Train methods for Quantum Impurity Solvers
NSF-BSF:CDS
- 批准号:
2401159 - 财政年份:2024
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
NSF-BSF: Collaborative Research: AF: Small: Algorithmic Performance through History Independence
NSF-BSF:协作研究:AF:小型:通过历史独立性实现算法性能
- 批准号:
2420942 - 财政年份:2024
- 资助金额:
$ 27万 - 项目类别:
Standard Grant