The proximal augmented Lagrangian method for distributed and embedded nonsmooth composite optimization
用于分布式嵌入式非光滑复合优化的近端增广拉格朗日方法
基本信息
- 批准号:1809833
- 负责人:
- 金额:$ 36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-15 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Large networks of dynamical systems that combine sensing, computing, and communication devices are ubiquitous in modern technology. One of the major challenges in networked systems is the development of fast and scalable methods for their analysis and design. Such systems involve large-scale interconnections of components, have rapidly-evolving structure and limitations on communication/processing power, and require real-time distributed control actions. These requirements make control strategies that rely on centralized information processing infeasible and motivate new classes of optimal control problems. In these, standard performance metrics are augmented with typically nonsmooth regularizers to promote desired structural features (e.g., low communication requirements) in the optimal controller. The broader impacts of the proposed work range from improved performance and reliability of power grid to systematic design of combination drug therapies for HIV treatment. The educational part of the proposal focuses on the development of new nonlinear and distributed systems curricula. The PI will develop new introductory courses aimed at attracting students from diverse engineering departments at senior undergraduate and first year graduate levels. The courses will emphasize practical applications, physical interpretations, structural features, and common themes in analysis and design of nonlinear and networked systems. The intellectual merit lies in the development of theory and techniques for distributed and embedded nonsmooth composite optimization. Structured optimal control and inverse problems, that arise especially when trying to identify and control dynamical representations of rapidly evolving systems in real-time, typically lead to optimization of functionals consisting of a sum of a smooth term and a nonsmooth regularizer. The PI's recent research will be leveraged to develop theoretical foundation and methods for solving these problems efficiently and reliably. The cornerstone of this proposal is the proximal augmented Lagrangian, a continuously differentiable function of primal and dual variables that enables the development of variety of first and second order methods for nonsmooth composite optimization. The PI will utilize structure of proximal operators associated with nonsmooth regularizers to develop efficient algorithms for large-scale distributed and embedded optimization and employ control-theoretic tools to establish their convergence rates. The proposed effort will furnish new classes of first and second order primal-dual algorithms for nonsmooth composite optimization, lead to significant advances in control-oriented and physically-viable modeling, and enable real-time distributed control of large-scale networks of dynamical systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
结合了感测、计算和通信设备的联合收割机的大型动态系统网络在现代技术中无处不在。网络系统的主要挑战之一是开发快速和可扩展的分析和设计方法。这样的系统涉及大规模的组件互连,具有快速发展的结构和通信/处理能力的限制,并需要实时分布式控制动作。这些要求使得依赖于集中式信息处理的控制策略不可行,并激发了新的最优控制问题。在这些中,标准性能度量用典型的非平滑正则化器来增强,以促进期望的结构特征(例如,低通信要求)。拟议工作的更广泛影响范围从改善电网的性能和可靠性到艾滋病毒治疗的联合药物疗法的系统设计。该提案的教育部分侧重于开发新的非线性和分布式系统课程。PI将开发新的入门课程,旨在吸引来自不同工程系的高年级本科生和一年级研究生的学生。课程将强调实际应用,物理解释,结构特征,以及非线性和网络系统的分析和设计中的共同主题。智力价值在于分布式和嵌入式非光滑复合优化的理论和技术的发展。结构化的最优控制和逆问题,特别是当试图识别和控制快速发展的系统的动态表示在实时出现,通常会导致优化的泛函组成的一个光滑项和一个非光滑正则化。PI最近的研究将被用来开发有效和可靠地解决这些问题的理论基础和方法。这个建议的基石是近端增广拉格朗日,一个连续微分函数的原始和对偶变量,使各种一阶和二阶方法的发展非光滑复合优化。PI将利用与非光滑正则化相关的邻近算子的结构来开发用于大规模分布式和嵌入式优化的有效算法,并采用控制理论工具来确定其收敛速度。所提出的努力将为非光滑复合优化提供新的一类一阶和二阶原始对偶算法,导致面向控制和物理可行建模的重大进展,实现对大型设备的实时分布式控制,该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查进行评估,被认为值得支持的搜索.
项目成果
期刊论文数量(20)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Convergence and Sample Complexity of Gradient Methods for the Model-Free Linear–Quadratic Regulator Problem
- DOI:10.1109/tac.2021.3087455
- 发表时间:2019-12
- 期刊:
- 影响因子:6.8
- 作者:Hesameddin Mohammadi;A. Zare;M. Soltanolkotabi;M. Jovanovi'c
- 通讯作者:Hesameddin Mohammadi;A. Zare;M. Soltanolkotabi;M. Jovanovi'c
Performance of noisy Nesterov's accelerated method for strongly convex optimization problems
- DOI:10.23919/acc.2019.8814680
- 发表时间:2019-07
- 期刊:
- 影响因子:0
- 作者:Hesameddin Mohammadi;Meisam Razaviyayn;M. Jovanović
- 通讯作者:Hesameddin Mohammadi;Meisam Razaviyayn;M. Jovanović
Topology Identification via Growing a Chow-Liu Tree Network
通过生长 Chow-Liu 树网络进行拓扑识别
- DOI:10.1109/cdc.2018.8619207
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Hassan-Moghaddam, Sepideh;Jovanovic, Mihailo R.
- 通讯作者:Jovanovic, Mihailo R.
On the asymptotic stability of proximal algorithms for convex optimization problems with multiple non-smooth regularizers
- DOI:10.23919/acc53348.2022.9867197
- 发表时间:2022-06
- 期刊:
- 影响因子:0
- 作者:Ibrahim Kurban Özaslan;Sepideh Hassan-Moghaddam;M. Jovanović
- 通讯作者:Ibrahim Kurban Özaslan;Sepideh Hassan-Moghaddam;M. Jovanović
On the Exponential Convergence Rate of Proximal Gradient Flow Algorithms
- DOI:10.1109/cdc.2018.8618968
- 发表时间:2018-12
- 期刊:
- 影响因子:0
- 作者:Sepideh Hassan-Moghaddam;M. Jovanović
- 通讯作者:Sepideh Hassan-Moghaddam;M. Jovanović
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mihailo Jovanovic其他文献
Mihailo Jovanovic的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mihailo Jovanovic', 18)}}的其他基金
CRII: CPS: Information-Constrained Cyber-Physical Systems for Supermarket Refrigerator Energy and Inventory Management
CRII:CPS:超市冰箱能源和库存管理的信息受限网络物理系统
- 批准号:
1657100 - 财政年份:2017
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Distributionally Robust Control and Incentives with Safety and Risk Constraints
具有安全和风险约束的分布式鲁棒控制和激励
- 批准号:
1708906 - 财政年份:2017
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Sparsity-promoting optimal design of large-scale networks of dynamical systems
大规模动力系统网络的稀疏性优化优化设计
- 批准号:
1739210 - 财政年份:2017
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Low-complexity Stochastic Modeling and Control of Turbulent Shear Flows
湍流剪切流的低复杂度随机建模和控制
- 批准号:
1739243 - 财政年份:2017
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Sparsity-promoting optimal design of large-scale networks of dynamical systems
大规模动力系统网络的稀疏性优化优化设计
- 批准号:
1407958 - 财政年份:2014
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Low-complexity Stochastic Modeling and Control of Turbulent Shear Flows
湍流剪切流的低复杂度随机建模和控制
- 批准号:
1363266 - 财政年份:2014
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Collaborative Research: Algorithms for Design of Structured Distributed Controllers with Application to Large-Scale Vehicular Formations
合作研究:应用于大规模车辆编队的结构化分布式控制器设计算法
- 批准号:
0927720 - 财政年份:2009
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
CAREER: Enabling Methods for Modeling and Control of Transitional and Turbulent Wall-Bounded Shear Flows
职业:过渡和湍流壁界剪切流的建模和控制方法
- 批准号:
0644793 - 财政年份:2007
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
相似海外基金
Developing and Visualising a Retrieval-Augmented Deep Learning Model for Population Health Management
开发和可视化用于人口健康管理的检索增强深度学习模型
- 批准号:
2905946 - 财政年份:2024
- 资助金额:
$ 36万 - 项目类别:
Studentship
STTR Phase I: Semantically-Enabled Augmented Reality for Manufacturing
STTR 第一阶段:用于制造的语义增强现实
- 批准号:
2335533 - 财政年份:2024
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
I-Corps: Integrating Complex Augmented Reality Systems in Nursing Education
I-Corps:将复杂的增强现实系统集成到护理教育中
- 批准号:
2349446 - 财政年份:2024
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
NATWORK: Net-Zero self-adaptive activation of distributed self-resilient augmented services
NATWORK:分布式自恢复增强服务的净零自适应激活
- 批准号:
10101189 - 财政年份:2024
- 资助金额:
$ 36万 - 项目类别:
EU-Funded
SBIR Phase I: Novel Camera-Projector Device Leveraging Markerless Skin Registration and Projected Augmented Reality Software to Enable Navigation for Minimally Invasive Procedures
SBIR 第一阶段:新型相机投影仪设备利用无标记皮肤配准和投影增强现实软件实现微创手术导航
- 批准号:
2321906 - 财政年份:2024
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
AUGSOC - Bringing the Augmented Society to Reality: Shaping Perception, Resilience, and Rights for Everyday AR
AUGSOC - 将增强社会变为现实:塑造日常 AR 的感知、弹性和权利
- 批准号:
EP/Z000068/1 - 财政年份:2024
- 资助金额:
$ 36万 - 项目类别:
Research Grant
Augmented Reality技術を応用した脊髄幹麻酔のための穿刺針ガイドシステムの開発研究
利用增强现实技术研发椎管内麻醉穿刺针引导系统
- 批准号:
24K12127 - 财政年份:2024
- 资助金额:
$ 36万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
I-Corps: Aging in Place with Artificial Intelligence-Powered Augmented Reality
I-Corps:利用人工智能驱动的增强现实实现原地老龄化
- 批准号:
2406592 - 财政年份:2024
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
SBIR Phase I: Subtractive-waveguide based Display for Augmented Reality Smart Glasses using Spatial-temporal Multiplexed Single-CMOS Panels
SBIR 第一阶段:使用时空复用单 CMOS 面板的基于减法波导的增强现实智能眼镜显示器
- 批准号:
2335927 - 财政年份:2024
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
CAREER: Holistic Distributed Resource Management and Discovery via Augmented Learning and Robust Optimization
职业:通过增强学习和鲁棒优化进行整体分布式资源管理和发现
- 批准号:
2339243 - 财政年份:2024
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant