Collaborative Research: Hierarchical Intelligent and Adaptive Techniques to Enable Resilient DC Power Systems

协作研究:分层智能和自适应技术实现弹性直流电源系统

基本信息

  • 批准号:
    1809839
  • 负责人:
  • 金额:
    $ 28.2万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-09-15 至 2022-08-31
  • 项目状态:
    已结题

项目摘要

As the adoption of energy sources and loads with inherent dc voltage continues to increase, an electric system based on dc power can offer tremendous advantages over ac, with higher efficiency, less power conversion stages, smaller footprint, and higher reliability. For these reasons, dc power systems and microgrids are now used in electric vehicles, ships, aircraft, and in rural areas. However, electrical faults in dc power networks can lead to extremely dangerous situations which are more difficult to interrupt than their ac counterparts, particularly due to the lack of zero voltage crossings. Moreover, high impedance faults in the form of electrical arcs, such as those caused by loose connections or chafed wires, are very difficult to detect because of the low fault current. The high penetration of electronics loads with advanced controllers make the fault detection and localization even more challenging. To increase the safety and resiliency of dc based systems, the proposed project will address these technical challenges in detecting high impedance faults in dc power systems by developing intelligent and adaptive fault detection, localization, and isolation techniques that are built upon a comprehensive and systematic fault modeling and characterization study. These techniques can significantly improve the performance of existing and future dc systems to enable their wide adoption at larger scales, which can provide efficient and reliable interfaces to many renewable resources, energy storage units, and modern electronic loads and align with the nation's initiatives in using clean and green energy. This project is intrinsically multidisciplinary by bringing advanced and exciting modern control theories, artificial intelligence, and signal processing techniques into electric power engineering. The tasks in this project involve a wide range of expertise and experience from software simulation and control algorithms to hardware testing; from circuit level study to system level implementation, which provides a unique and high quality training opportunity for future engineers. The proposed educational activities will also broaden participation of women and other under-represented students.The goal of the proposed research is to develop fault detection, localization, and isolation techniques for modern dc power systems through a hierarchical approach with intelligent and adaptive functionalities. It addresses the most challenging issues in the protection of dc power systems with a systematic and transformative effort. The fault modeling and characterization study of the proposed project will generate fundamental and critical knowledge of high impedance faults in modern application settings through comprehensive experimental and analytical approaches. The proposed high impedance fault detection and localization techniques will take into account the effect of advanced controllers through dynamic parameter estimation. The adaptive and integrated fault detection and localization schemes to be developed will significantly enhance the existing protection system design and online stability assessment methodologies by adopting modern nonlinear control theory and artificial intelligence tools. The proposed research is expected to produce significant results of both theoretical and practical values to the field of dc power systems. When successfully completed, the project has the potential to revolutionize the control and protection aspects of dc power systems, minimizing the adverse impact of high impedance faults and constant power loads. The proposed techniques can be applied to dc systems in different scales ranging from isolated dc distribution networks to interconnected dc microgrids, to improve the fault protection effectiveness and therefore their resiliency.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随着采用具有固有直流电压的能源和负载的持续增加,基于直流电源的电力系统可以提供比交流更高的效率、更少的功率转换级、更小的占地面积和更高的可靠性的巨大优势。 由于这些原因,直流电源系统和微电网现在用于电动汽车,船舶,飞机和农村地区。 然而,直流电网中的电气故障可能导致极其危险的情况,其比交流电网更难中断,特别是由于缺乏零电压交叉。 此外,电弧形式的高阻抗故障,例如由松动连接或磨损的电线引起的高阻抗故障,由于故障电流低而非常难以检测。 电子负载与先进控制器的高度渗透使得故障检测和定位更具挑战性。 为了提高直流系统的安全性和弹性,拟议项目将通过开发智能和自适应故障检测,定位和隔离技术,建立在全面和系统的故障建模和表征研究的基础上,解决这些技术挑战,在检测直流电力系统中的高阻抗故障。这些技术可以显著提高现有和未来直流系统的性能,使其能够在更大范围内广泛采用,这可以为许多可再生资源,储能单元和现代电子负载提供高效可靠的接口,并与国家使用清洁和绿色能源的倡议保持一致。 该项目本质上是多学科的,将先进和令人兴奋的现代控制理论,人工智能和信号处理技术引入电力工程。 该项目的任务涉及从软件仿真和控制算法到硬件测试的广泛专业知识和经验;从电路级研究到系统级实施,为未来的工程师提供了独特和高质量的培训机会。拟议的教育活动也将扩大妇女和其他代表性不足的学生的参与。拟议研究的目标是通过智能和自适应功能的分层方法,为现代直流电源系统开发故障检测,定位和隔离技术。 它解决了直流电力系统保护中最具挑战性的问题,并进行了系统的变革。 拟议项目的故障建模和表征研究将通过全面的实验和分析方法,产生现代应用环境中高阻抗故障的基础和关键知识。 建议的高阻抗故障检测和定位技术将考虑先进的控制器的效果,通过动态参数估计。 拟开发的自适应和综合故障检测和定位方案将通过采用现代非线性控制理论和人工智能工具,显著增强现有的保护系统设计和在线稳定性评估方法。本文的研究成果对直流电力系统的研究具有重要的理论意义和实用价值。 成功完成后,该项目有可能彻底改变直流电力系统的控制和保护方面,最大限度地减少高阻抗故障和恒定功率负载的不利影响。 所提出的技术可以应用于不同规模的直流系统,从孤立的直流配电网到互连的直流微电网,以提高故障保护的有效性,从而提高其弹性。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Unknown Input Observer-Based Series DC Arc Fault Detection in DC Microgrids
直流微电网中基于未知输入观测器的串联直流电弧故障检测
Dual State - Parameter Estimation for Series Arc Fault Detection on a DC Microgrid
Recursive Least Squares and Adaptive Kalman Filter-Based State and Parameter Estimation for Series Arc Fault Detection on DC Microgrids
用于直流微电网串联电弧故障检测的递归最小二乘和基于自适应卡尔曼滤波器的状态和参数估计
Quickest Detection of Series Arc Faults on DC Microgrids
直流微电网串联电弧故障的最快检测
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xiu Yao其他文献

Detection of False Data Injection and Series Arc Faults in DC Microgrids Based on Unknown Input Observers
基于未知输入观测器的直流微电网中虚假数据注入和串联电弧故障检测
Parameter Identification Approach to Series DC Arc Fault Detection and Localization
串联直流电弧故障检测与定位的参数辨识方法
Advanced Concepts for Vertical Stability Power Supply in Fusion Devices
聚变装置垂直稳定电源的先进概念
A Review of Voltage Sharing Control Methods for Series-connected IGBTs for Applications in Pulsed Power Generation
脉冲发电中串联 IGBT 均压控制方法综述
Study on the Influence of Switching Impulse Superposition Phase on AC Partial Discharge of Epoxy Surface in SF6 Gas
SF6气体中开关脉冲叠加相位对环氧表面交流局部放电的影响研究
  • DOI:
    10.1109/tpwrd.2019.2941121
  • 发表时间:
    2020-06
  • 期刊:
  • 影响因子:
    4.4
  • 作者:
    Cong He;Liang Zhang;Xuanrui Zhang;Junhao Li;Xiu Yao
  • 通讯作者:
    Xiu Yao

Xiu Yao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xiu Yao', 18)}}的其他基金

Series Connection of Power Devices for Modular Multilevel Converter based High Voltage Direct Current Transmissions
基于模块化多电平变流器的高压直流输电功率器件串联
  • 批准号:
    1711659
  • 财政年份:
    2017
  • 资助金额:
    $ 28.2万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: An Integrated Framework for Learning-Enabled and Communication-Aware Hierarchical Distributed Optimization
协作研究:支持学习和通信感知的分层分布式优化的集成框架
  • 批准号:
    2331710
  • 财政年份:
    2024
  • 资助金额:
    $ 28.2万
  • 项目类别:
    Standard Grant
Collaborative Research: An Integrated Framework for Learning-Enabled and Communication-Aware Hierarchical Distributed Optimization
协作研究:支持学习和通信感知的分层分布式优化的集成框架
  • 批准号:
    2331711
  • 财政年份:
    2024
  • 资助金额:
    $ 28.2万
  • 项目类别:
    Standard Grant
Collaborative Research: RUI: Wave Engineering in 2D Using Hierarchical Nanostructured Dynamical Systems
合作研究:RUI:使用分层纳米结构动力系统进行二维波浪工程
  • 批准号:
    2337506
  • 财政年份:
    2024
  • 资助金额:
    $ 28.2万
  • 项目类别:
    Standard Grant
Collaborative Research: Wave Engineering in 2D Using Hierarchical Nanostructured Dynamical Systems
合作研究:使用分层纳米结构动力系统进行二维波动工程
  • 批准号:
    2337507
  • 财政年份:
    2024
  • 资助金额:
    $ 28.2万
  • 项目类别:
    Standard Grant
Collaborative Research: Enabling Hybrid Methods in the NIMBLE Hierarchical Statistical Modeling Platform
协作研究:在 NIMBLE 分层统计建模平台中启用混合方法
  • 批准号:
    2332442
  • 财政年份:
    2023
  • 资助金额:
    $ 28.2万
  • 项目类别:
    Standard Grant
Collaborative Research: Designing Polymer Grafted-Nanoparticle Melts through a Hierarchical Computational Approach
合作研究:通过分层计算方法设计聚合物接枝纳米颗粒熔体
  • 批准号:
    2226081
  • 财政年份:
    2023
  • 资助金额:
    $ 28.2万
  • 项目类别:
    Standard Grant
Collaborative Research: Designing Polymer Grafted-Nanoparticle Melts through a Hierarchical Computational Approach
合作研究:通过分层计算方法设计聚合物接枝纳米颗粒熔体
  • 批准号:
    2226898
  • 财政年份:
    2023
  • 资助金额:
    $ 28.2万
  • 项目类别:
    Standard Grant
Collaborative Research: CCSS: Hierarchical Federated Learning over Highly-Dense and Overlapping NextG Wireless Deployments: Orchestrating Resources for Performance
协作研究:CCSS:高密度和重叠的 NextG 无线部署的分层联合学习:编排资源以提高性能
  • 批准号:
    2319780
  • 财政年份:
    2023
  • 资助金额:
    $ 28.2万
  • 项目类别:
    Standard Grant
Collaborative Research: CCSS: Hierarchical Federated Learning over Highly-Dense and Overlapping NextG Wireless Deployments: Orchestrating Resources for Performance
协作研究:CCSS:高密度和重叠的 NextG 无线部署的分层联合学习:编排资源以提高性能
  • 批准号:
    2319781
  • 财政年份:
    2023
  • 资助金额:
    $ 28.2万
  • 项目类别:
    Standard Grant
Collaborative Research: Elucidating Exciton Transport in Hierarchical Organic Materials through Time-Resolved Electronic and Vibrational Spectroscopy/Microscopy
合作研究:通过时间分辨电子和振动光谱/显微镜阐明多级有机材料中的激子传输
  • 批准号:
    2401851
  • 财政年份:
    2023
  • 资助金额:
    $ 28.2万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了