A Revolutionary Way to Tackle Challenging MILP Problems in Power Systems through Accelerated Convergence, Formulation Tightening and Asynchronous Optimization
通过加速收敛、公式紧缩和异步优化来解决电力系统中具有挑战性的 MILP 问题的革命性方法
基本信息
- 批准号:1810108
- 负责人:
- 金额:$ 36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-15 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Many important optimization problems in power systems are formulated as Mixed-Integer Linear Programming (MILP, with integer and continues variables and a linear structure) problems. Because of the existence of integer variables, problem complexity generally increases exponentially as the problem size increases. One important example is Unit Commitment and Economic Dispatch (UCED) with complicated units that are difficult to handle, e.g., combined cycle units. We have witnessed the breakdown of existing methods on large-scale UCED cases. The problem is further complicated by the significant increase of distributed generation, including intermittent renewables, making it very difficult to solve, and pushing for a centralized/decentralized hybrid grid architecture. This project seeks to revolutionize the way how complicated MILP problems are formulated and solved within a decomposition and coordination framework, exploiting the exponential decrease of complexity upon decomposition and uses our recent breakthrough on effective coordination. Using UCED as the problem context, Task 1 is on developing a novel and systematic approach, to tighten MILP formulations. In the extreme case, a problem's constraints directly delineate its "convex hull," and the "NP-hard" problem can be solved by using linear programming methods without difficulties. To solve practical problems within the decomposition and coordination framework, the focus is on obtaining "near tight" formulations of single units. Motivated by the foreseeable transitioning from a centralized grid toward a hybrid grid, in Task 2, a distributed and asynchronous coordination method will be investigated with subproblems solved in a distributed way and prices updated asynchronously. The intellectual merit is on the revolutionary way to formulate and solve MILP problems - not just to describe constraints, but to transform them to a "near-tight" form, and to exploit exponential decrease of complexity via decomposition plus effective and asynchronous coordination. The research will have broader impacts on other MILP problems in power systems and beyond, e.g., distribution networks, self-optimizing factories, autonomous and coordinated systems; and on nonlinear problems with separable structures. The research will also educate graduate, undergraduate and professionals through courses, seminars, publications and online materials, and impact high school students through UConn's da Vinci summer program.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
电力系统中许多重要的优化问题都可以归结为具有整数和连续变量以及线性结构的混合线性规划问题。由于整数变量的存在,问题的复杂性通常会随着问题规模的增加而呈指数级增加。 一个重要的例子是机组组合和经济调度(UCED),其具有难以处理的复杂机组,例如,联合循环机组我们目睹了现有方法在大规模UCED案例中的崩溃。分布式发电的显著增加,包括间歇性可再生能源,使问题变得更加复杂,这使得解决问题变得非常困难,并推动了集中式/分散式混合电网架构。该项目旨在彻底改变在分解和协调框架内制定和解决复杂MILP问题的方式,利用分解后复杂性的指数下降,并使用我们最近在有效协调方面的突破。 使用UCED作为问题背景,任务1是开发一种新的系统方法,以收紧MILP公式。在极端情况下,问题的约束直接描绘了它的“凸船体”,并且“NP难”问题可以通过使用线性规划方法来解决。在分解协调框架内解决实际问题,重点是获得“近紧”的单单元公式。受可预见的从集中式网格向混合网格过渡的启发,在任务2中,将研究分布式和异步协调方法,子问题以分布式方式解决,价格异步更新。其智力价值在于以革命性的方式来制定和解决MILP问题-不仅要描述约束,还要将其转换为“近紧”形式,并通过分解加上有效和异步协调来利用复杂性的指数下降。该研究将对电力系统及其他领域的其他MILP问题产生更广泛的影响,例如,配电网络,自优化工厂,自治和协调系统;以及可分离结构的非线性问题。该研究还将通过课程、研讨会、出版物和在线材料教育研究生、本科生和专业人士,并通过康州大学的达芬奇暑期项目影响高中生。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
TSO-DSO Operational Planning Coordination Through “$l_1-$Proximal” Surrogate Lagrangian Relaxation
- DOI:10.1109/tpwrs.2021.3101220
- 发表时间:2021-01
- 期刊:
- 影响因子:6.6
- 作者:Mikhail A. Bragin;Y. Dvorkin
- 通讯作者:Mikhail A. Bragin;Y. Dvorkin
Distributed and Asynchronous Coordination of a Mixed-Integer Linear System via Surrogate Lagrangian Relaxation
- DOI:10.1109/tase.2020.2998048
- 发表时间:2021-07-01
- 期刊:
- 影响因子:5.6
- 作者:Bragin, Mikhail A.;Yan, Bing;Luh, Peter B.
- 通讯作者:Luh, Peter B.
Impacts of UC Formulation Tightening on Computation of Convex Hull Prices
UC 公式紧缩对凸包价格计算的影响
- DOI:10.1109/pesgm46819.2021.9638016
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:F. Hyder, B. Yan
- 通讯作者:F. Hyder, B. Yan
Effects of Tightening Unit-level and System-level Constraints in Unit Commitment,
收紧单位级和系统级约束对单位承诺的影响,
- DOI:
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Yan, Bing;Luh, Peter B.;Litvinov, Eugene;Zheng, Tongxin;Schiro, Dane;Bragin, Mikhail A.;Zhao, Feng;Zhao, Jinye;Lelic, Izudin
- 通讯作者:Lelic, Izudin
Tightened Formulation and Resolution of Energy-Efficient Job-Shop Scheduling
- DOI:10.1109/case48305.2020.9217035
- 发表时间:2020-08
- 期刊:
- 影响因子:0
- 作者:B. Yan;Mikhail A. Bragin;P. Luh
- 通讯作者:B. Yan;Mikhail A. Bragin;P. Luh
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zongjie Wang其他文献
DeepTrayMeal: Automatic dietary assessment for Chinese tray meals based on deep learning.
DeepTrayMeal:基于深度学习的中餐托盘餐自动膳食评估。
- DOI:
10.1016/j.foodchem.2023.137525 - 发表时间:
2023 - 期刊:
- 影响因子:8.8
- 作者:
Jialin Shi;Qi Han;Zhongxiang Cao;Zongjie Wang - 通讯作者:
Zongjie Wang
Research on High-Power Rapid Charge Approach for EV Based on Clustered Multi-node Learning Gaussian Process
基于集群多节点学习高斯过程的电动汽车大功率快速充电方法研究
- DOI:
10.23919/ipec-himeji2022-ecce53331.2022.9806863 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Liguo Wang;Zhenteng Tian;Yuanting Hu;Chunlai Yu;Zongjie Wang;F. Gao - 通讯作者:
F. Gao
High-yield production of FK228 and new derivatives in a emBurkholderia/em chassis
伯克霍尔德氏菌底盘中 FK228 及其新衍生物的高产
- DOI:
10.1016/j.ymben.2022.12.002 - 发表时间:
2023-01-01 - 期刊:
- 影响因子:6.800
- 作者:
Kai Gong;Maoqin Wang;Qiong Duan;Gang Li;Daojing Yong;Cailing Ren;Yue Li;Qijun Zhang;Zongjie Wang;Tao Sun;Huanyun Zhang;Qiang Tu;Changsheng Wu;Jun Fu;Aiying Li;Chaoyi Song;Youming Zhang;Ruijuan Li - 通讯作者:
Ruijuan Li
Ultrasensitive Detection and Depletion of Rare Leukemic B Cells in T Cell Populations via Immunomagnetic Cell Ranking.
通过免疫磁性细胞排序对 T 细胞群中罕见的白血病 B 细胞进行超灵敏检测和消除。
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:7.4
- 作者:
Zongjie Wang;E. Sargent;S. Kelley - 通讯作者:
S. Kelley
An ultrafast hydrogel photocrosslinking method for direct laser bioprinting
用于直接激光生物打印的超快水凝胶光交联方法
- DOI:
10.1039/c5ra24910d - 发表时间:
2016 - 期刊:
- 影响因子:3.9
- 作者:
Zongjie Wang;Xian Jin;Ru Dai;J. Holzman;Keekyoung Kim - 通讯作者:
Keekyoung Kim
Zongjie Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
连续变量One-way量子计算的理论研究与实验设计
- 批准号:61078010
- 批准年份:2010
- 资助金额:32.0 万元
- 项目类别:面上项目
相似海外基金
SeparateSpace: Leveraging generative AI to help separating families who are underserved or excluded by the way family law support is currently delivered.
SeparateSpace:利用生成式人工智能来帮助分离那些因目前提供家庭法支持的方式而服务不足或被排除在外的家庭。
- 批准号:
10100497 - 财政年份:2024
- 资助金额:
$ 36万 - 项目类别:
Collaborative R&D
'And many a strange adventure came my way in that time': Adaptation of the 13th c. French text 'The Quest of the Holy Grail' in 15th c. Ireland.
“在那段时间里,我经历了许多奇怪的冒险”:改编自 13 世纪。
- 批准号:
2506854 - 财政年份:2024
- 资助金额:
$ 36万 - 项目类别:
Studentship
Is to achieve a breakthrough in the problem of how to reliably control the many qubits in an errorfree and scalable way.
就是要在如何以无错误且可扩展的方式可靠地控制众多量子比特的问题上取得突破。
- 批准号:
2906479 - 财政年份:2024
- 资助金额:
$ 36万 - 项目类别:
Studentship
Arctic Sea-ice Attenuation of Sea Swell, Microseism and the Prospect for using Seismology as a way to Observe Sea-ice Conditions
北极海冰对海涌的衰减、微震以及利用地震学观测海冰状况的前景
- 批准号:
2336786 - 财政年份:2024
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Two-way shape-memory polymer design based on periodic dynamic crosslinks inducing supramolecular nanostructures
基于周期性动态交联诱导超分子纳米结构的双向形状记忆聚合物设计
- 批准号:
2342272 - 财政年份:2024
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
How galactic mergers and their stellar survivors shaped our Milky Way
星系合并及其恒星幸存者如何塑造我们的银河系
- 批准号:
DE240100150 - 财政年份:2024
- 资助金额:
$ 36万 - 项目类别:
Discovery Early Career Researcher Award
OneFit.ai - A sustainable and efficient way to purchase shoes online
OneFit.ai - 一种可持续且高效的在线购买鞋子的方式
- 批准号:
10114095 - 财政年份:2024
- 资助金额:
$ 36万 - 项目类别:
SME Support
Decoding the structure and formation history of the Milky Way halo with non-equilibrium orbit-based models
用非平衡轨道模型解码银河系晕的结构和形成历史
- 批准号:
ST/X004066/1 - 财政年份:2024
- 资助金额:
$ 36万 - 项目类别:
Fellowship
Shedding light on dark matter with galactic dynamics in the Milky Way and beyond
通过银河系及其他星系的星系动力学揭示暗物质
- 批准号:
MR/X033740/1 - 财政年份:2024
- 资助金额:
$ 36万 - 项目类别:
Fellowship
CAREER: Building the Merger Tree of the Milky Way with Machine Learning
职业:用机器学习构建银河系的合并树
- 批准号:
2337864 - 财政年份:2024
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant