Interactions of Quantum Affine Algebras with Cluster Algebras, Current Algebras and Categorification

量子仿射代数与簇代数、现代数和分类的相互作用

基本信息

  • 批准号:
    1810211
  • 负责人:
  • 金额:
    $ 4.92万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-05-15 至 2019-04-30
  • 项目状态:
    已结题

项目摘要

The conference "Interactions of quantum affine algebras with cluster algebras, current algebras and categorification" will take place at the Catholic University of America in Washington, DC on June 2-8, 2018. The conference will focus on problems related to, or motivated by, representations of infinite dimensional Lie algebras and their quantum analogues. The recent rapid growth, rising prominence, and emerging connections between these topics underscores the timely need for a conference that focuses on new connections by bringing together leading researchers who work on different aspects of these subjects. A main goal of the conference is to expose graduate students and early-career researchers to recent developments in representation theory. In an effort to foster their interest and engagement, the four day conference will be preceded by a three day summer school/workshop for junior researchers. Infinite-dimensional Lie algebras and their quantum analogues play a prominent role in mathematics and mathematical physics. In recent decades their representation theory has been connected with a number of different subjects, such as algebraic geometry, algebraic topology, combinatorics and cluster algebras, to name but a few. The talks will focus on topics such as crystal and canonical bases, Weyl, Demazure and Kirillov-Reshetikhin modules and interaction between them, highest weight categories, Khovanov-Lauda-Rouquier algebras and their applications to categorification, cluster algebras and related structures, geometric methods in infinite dimensional representation theory (in particular, the role of quiver varieties), and map algebras. A special emphasis will be placed on interactions between various structures. Further details can be found at the conference website: http://www.mi.uni-koeln.de/~dkus/.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
会议“量子仿射代数与集群代数,当前代数和分类的相互作用”将于2018年6月2日至8日在华盛顿的美国天主教大学举行。会议将集中讨论与无限维李代数及其量子类似物的表示相关或受其启发的问题。最近的快速增长,日益突出,以及这些主题之间的新兴联系,强调了及时需要一个会议,重点是通过汇集在这些主题的不同方面工作的领先研究人员的新联系。会议的一个主要目标是让研究生和早期职业研究人员了解表征理论的最新发展。为了培养他们的兴趣和参与度,为期四天的会议之前将为初级研究人员举办为期三天的暑期学校/研讨会。无限维李代数及其量子类似物在数学和数学物理中起着重要作用。近几十年来,他们的代表性理论已连接到一些不同的主题,如代数几何,代数拓扑,组合和集群代数,仅举几例。会谈将集中在主题,如晶体和规范基地,外尔,Demazure和Kirillov-Reshetikhin模块和它们之间的相互作用,最高权重类别,Khovanov-Lauda-Rouquier代数及其应用分类,集群代数和相关结构,几何方法在无限维表示理论(特别是,的作用,品种),和地图代数。将特别强调各种结构之间的相互作用。更多细节可在会议网站上找到:http://www.mi.uni-koeln.de/~dkus/.This奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Prasad Senesi其他文献

Weyl modules for the twisted loop algebras
扭曲环代数的 Weyl 模
  • DOI:
    10.1016/j.jalgebra.2008.02.030
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0.9
  • 作者:
    Vyjayanthi Chari;G. Fourier;Prasad Senesi
  • 通讯作者:
    Prasad Senesi
The block decomposition of finite-dimensional representations of twisted loop algebras
扭曲环代数有限维表示的分块分解
  • DOI:
    10.2140/pjm.2010.244.335
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Prasad Senesi
  • 通讯作者:
    Prasad Senesi
On the representation theory of cyclic and dihedral quandles
循环二面角表示论
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Elhamdadi;Prasad Senesi;E. Zappala
  • 通讯作者:
    E. Zappala
Finite-dimensional representation theory of loop algebras: a survey
环代数的有限维表示理论:综述
  • DOI:
    10.1090/conm/506/09944
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Prasad Senesi
  • 通讯作者:
    Prasad Senesi
Global Weyl modules for the twisted loop algebra
用于扭曲环代数的全局 Weyl 模块

Prasad Senesi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Simulation and certification of the ground state of many-body systems on quantum simulators
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
Mapping Quantum Chromodynamics by Nuclear Collisions at High and Moderate Energies
  • 批准号:
    11875153
  • 批准年份:
    2018
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

Study on the representations of affine quantum groups using quivers with potentials
用势颤振表示仿射量子群的研究
  • 批准号:
    23K12955
  • 财政年份:
    2023
  • 资助金额:
    $ 4.92万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Integrable deformations with twisted quantum affine symmetry
具有扭曲量子仿射对称性的可积分变形
  • 批准号:
    2713401
  • 财政年份:
    2022
  • 资助金额:
    $ 4.92万
  • 项目类别:
    Studentship
A rational approach to affine quantum algebras
仿射量子代数的理性方法
  • 批准号:
    RGPIN-2022-03298
  • 财政年份:
    2022
  • 资助金额:
    $ 4.92万
  • 项目类别:
    Discovery Grants Program - Individual
A rational approach to affine quantum algebras
仿射量子代数的理性方法
  • 批准号:
    DGECR-2022-00440
  • 财政年份:
    2022
  • 资助金额:
    $ 4.92万
  • 项目类别:
    Discovery Launch Supplement
Affine and double affine quantum algebras
仿射和双仿射量子代数
  • 批准号:
    RGPIN-2019-04799
  • 财政年份:
    2022
  • 资助金额:
    $ 4.92万
  • 项目类别:
    Discovery Grants Program - Individual
Quantum Affine Oriented Frobenius Brauer Categories
量子仿射定向 Frobenius Brauer 类别
  • 批准号:
    575291-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 4.92万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Affine and double affine quantum algebras
仿射和双仿射量子代数
  • 批准号:
    RGPIN-2019-04799
  • 财政年份:
    2021
  • 资助金额:
    $ 4.92万
  • 项目类别:
    Discovery Grants Program - Individual
Supersymmetric rigged configurations and crystals of quantum affine supergroups
量子仿射超群的超对称操纵构型和晶体
  • 批准号:
    21F51028
  • 财政年份:
    2021
  • 资助金额:
    $ 4.92万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Affine and double affine quantum algebras
仿射和双仿射量子代数
  • 批准号:
    RGPIN-2019-04799
  • 财政年份:
    2020
  • 资助金额:
    $ 4.92万
  • 项目类别:
    Discovery Grants Program - Individual
Representation theory of quantum affine algebras and its applications in geometry and combinatorics
量子仿射代数表示论及其在几何和组合学中的应用
  • 批准号:
    19K14519
  • 财政年份:
    2019
  • 资助金额:
    $ 4.92万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了