A rational approach to affine quantum algebras

仿射量子代数的理性方法

基本信息

  • 批准号:
    RGPIN-2022-03298
  • 负责人:
  • 金额:
    $ 1.89万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

A basic mathematical operation we encounter early on is that of multiplication; we can multiply real numbers, rational numbers, integers, and so forth. This operation has an endless list of beautiful properties. For instance, every positive integer can be written uniquely as a product of prime numbers, a fact which has applications that transcend mathematics, such as in cryptography. Multiplication, however, also arises naturally in much more abstract settings. In linear algebra, one learns that we can multiply matrices - arrays of numbers which encode systems of equations. Abstracting this further, we can even multiply together vector spaces, examples of which include the real number line, the plane, three-dimensional space and higher dimension analogues. Why would we carry out an operation like this? It turns out that this type of multiplication of spaces, called a tensor product, arises in many remarkable, concrete settings; for instance, in analyzing certain lattice models of theoretical physics, and in the study of quantum analogues of important systems of differential equations. In these settings, the underlying multiplication is highly non-trivial, encoding a rich list of symmetries, and the entire setup may be viewed as arising from an abstract algebraic structure, often viewed as a type of symmetry algebra. It is in this context that the structures at the heart of my research, called quantum groups, arise. More precisely, I study the representation theory of those quantum algebras which are said to be of affine or double affine type. These were formally introduced in the 1980's, under the influence of the quantum inverse scattering method of theoretical physics, and have since become prolific mathematical objects whose theory frequently intertwines algebra, geometry and mathematical physics. A fascinating feature of these structures is that many of their key properties can be elegantly described in the language of rational functions. This is especially true for their tensor structure, and this leads to a wealth of interesting applications unique to affine quantum algebras. The goal of my research is to develop this language in several novel directions using algebraic tools, and then to apply it in order to address open problems and extend the existing theory in meaningful ways. Examples of specific problems that will be addressed include studying a variant of prime factorization of integers for tensor products in terms of the singularities of certain rational operators, constructing universal R and K-matrices (objects which arise in quantum integrability) for affine and twisted Yangians, and developing the emerging theory of affine quantum symmetric pairs. The results will be of interest to algebraists studying various topics in representation theory, geometers with interests in Lie theory and quiver varieties, and mathematical physicists studying a wide range of topics, including gauge theory and quantum integrable systems.
我们在早期遇到的一个基本数学运算是乘法运算;我们可以将实数、有理数、整数等相乘。这家酒店有一大堆漂亮的物业。例如,每个正整数都可以唯一地写成素数的乘积,这一事实具有超越数学的应用,例如在密码学中。然而,乘法也自然而然地出现在更抽象的环境中。在线性代数中,人们学习到我们可以将矩阵相乘--对方程系统进行编码的数字阵列。进一步抽象,我们甚至可以将向量空间相乘,例如实数线、平面、三维空间和更高维的类似物。我们为什么要进行这样的行动?事实证明,这种类型的空间乘法被称为张量积,出现在许多值得注意的具体环境中;例如,在分析理论物理的某些晶格模型时,以及在研究重要的微分方程组的量子类比时。在这些设置中,基本的乘法是非常不平凡的,编码了丰富的对称列表,并且整个设置可以被视为源于抽象的代数结构,通常被视为一种对称代数。正是在这种背景下,我研究的核心结构--量子群--出现了。更确切地说,我研究了那些被称为仿射型或双仿射型的量子代数的表示理论。在理论物理的量子逆散射方法的影响下,这些理论在20世纪80年代被正式引入S,此后成为多产的数学对象,其理论经常交织在代数、几何和数学物理中。这些结构的一个吸引人的特征是,它们的许多关键属性可以用有理函数的语言优雅地描述。对于它们的张量结构尤其如此,这导致了仿射量子代数特有的大量有趣的应用。我的研究目标是使用代数工具在几个新的方向上发展这种语言,然后应用它来解决公开的问题并以有意义的方式扩展现有的理论。将解决的具体问题的例子包括根据某些有理算子的奇异性研究张量积的整数的素因式分解的变体,为仿射和扭曲的延安构造泛R和K-矩阵(出现在量子可积中的对象),以及发展新兴的仿射量子对称对理论。这些结果将对研究表示论中的各种主题的代数学家、对李理论和箭图簇感兴趣的几何学家以及研究包括规范理论和量子可积系统在内的广泛主题的数学物理学家感兴趣。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Wendlandt, Curtis其他文献

Wendlandt, Curtis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Wendlandt, Curtis', 18)}}的其他基金

A rational approach to affine quantum algebras
仿射量子代数的理性方法
  • 批准号:
    DGECR-2022-00440
  • 财政年份:
    2022
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Launch Supplement
Braidings associated to Yangians and twisted Yangians
与 Yangians 和扭曲 Yangians 相关的辫子
  • 批准号:
    532566-2019
  • 财政年份:
    2020
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Postdoctoral Fellowships
Braidings associated to Yangians and twisted Yangians
与 Yangians 和扭曲 Yangians 相关的辫子
  • 批准号:
    532566-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Postdoctoral Fellowships
Finite-dimensional representations of twisted Yangians of types B,C, and D.
B、C 和 D 型扭曲 Yangians 的有限维表示。
  • 批准号:
    490322-2016
  • 财政年份:
    2018
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Finite-dimensional representations of twisted Yangians of types B,C, and D.
B、C 和 D 型扭曲 Yangians 的有限维表示。
  • 批准号:
    490322-2016
  • 财政年份:
    2017
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
q-Schur superalgebras of type Q.
Q 型 q-Schur 超代数。
  • 批准号:
    467129-2014
  • 财政年份:
    2014
  • 资助金额:
    $ 1.89万
  • 项目类别:
    University Undergraduate Student Research Awards
Quantum walled Brauer-Clifford algebras
量子壁 Brauer-Clifford 代数
  • 批准号:
    429395-2012
  • 财政年份:
    2012
  • 资助金额:
    $ 1.89万
  • 项目类别:
    University Undergraduate Student Research Awards

相似国自然基金

量化 domain 的拓扑性质
  • 批准号:
    11771310
  • 批准年份:
    2017
  • 资助金额:
    48.0 万元
  • 项目类别:
    面上项目
基于Riemann-Hilbert方法的相关问题研究
  • 批准号:
    11026205
  • 批准年份:
    2010
  • 资助金额:
    3.0 万元
  • 项目类别:
    数学天元基金项目
EnSite array指导下对Stepwise approach无效的慢性房颤机制及消融径线设计的实验研究
  • 批准号:
    81070152
  • 批准年份:
    2010
  • 资助金额:
    10.0 万元
  • 项目类别:
    面上项目
MBR中溶解性微生物产物膜污染界面微距作用机制定量解析
  • 批准号:
    50908133
  • 批准年份:
    2009
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
新型低碳马氏体高强钢在不同低温下解理断裂物理模型的研究
  • 批准号:
    50671047
  • 批准年份:
    2006
  • 资助金额:
    30.0 万元
  • 项目类别:
    面上项目
基于生态位理论与方法优化沙区人工植物群落的研究
  • 批准号:
    30470298
  • 批准年份:
    2004
  • 资助金额:
    15.0 万元
  • 项目类别:
    面上项目

相似海外基金

Understanding The Political Representation of Men: A Novel Approach to Making Politics More Inclusive
了解男性的政治代表性:使政治更具包容性的新方法
  • 批准号:
    EP/Z000246/1
  • 财政年份:
    2025
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Research Grant
Contaminants of emerging concern: An integrated approach for assessing impacts on the marine environment. Acronym: CONTRAST
新出现的污染物:评估对海洋环境影响的综合方法。
  • 批准号:
    10093180
  • 财政年份:
    2024
  • 资助金额:
    $ 1.89万
  • 项目类别:
    EU-Funded
An engineering biology approach for sustainable production of omega 3 and pigments from microalgae
一种利用微藻可持续生产 omega 3 和色素的工程生物学方法
  • 批准号:
    10107393
  • 财政年份:
    2024
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Launchpad
An Integrated Life-course Approach for Person-centred Solutions and Care for Ageing with Multi-morbidity in the European Regions - STAGE; Stay Healthy Through Ageing
欧洲地区以人为本的解决方案和针对多种疾病的老龄化护理的综合生命全程方法 - STAGE;
  • 批准号:
    10112787
  • 财政年份:
    2024
  • 资助金额:
    $ 1.89万
  • 项目类别:
    EU-Funded
「生きづらさ」を抱える妊産婦に対するnon-stigmatizing approachの開発
为正在经历“生活困难”的孕妇制定一种非侮辱性的方法
  • 批准号:
    24K14025
  • 财政年份:
    2024
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Host-Guest Complexation: A Modular Approach for Structural Control (MAS-Control) in Supramolecular Polymerization
主客体络合:超分子聚合中结构控制(MAS-Control)的模块化方法
  • 批准号:
    EP/Y027965/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Fellowship
Bi-parameter paracontrolled approach to singular stochastic wave equations
奇异随机波动方程的双参数参数控制方法
  • 批准号:
    EP/Y033507/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Research Grant
How do healthy brains drive a healthy economy? A novel occupational neuroscience approach
健康的大脑如何推动健康的经济?
  • 批准号:
    MR/X034100/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Fellowship
Haptic Shared Control Systems And A Neuroergonomic Approach To Measuring System Trust
触觉共享控制系统和测量系统信任的神经工学方法
  • 批准号:
    EP/Y00194X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Research Grant
Collaborative Research: Uncovering the adaptive origins of fossil apes through the application of a transdisciplinary approach
合作研究:通过应用跨学科方法揭示类人猿化石的适应性起源
  • 批准号:
    2316612
  • 财政年份:
    2024
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了