Deep Optical Learning Devices and Architectures
深度光学学习设备和架构
基本信息
- 批准号:1810508
- 负责人:
- 金额:$ 35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In this proposal the authors introduce a new concept for an optical device, the optical Rectifying Linear Unit or ReLU, and motivate it as the key enabling technology required for constructing an optical deep learning system. The ReLU neuron was introduced to alleviate the vanishing gradient problem in deep multi-layer neural networks, and it has allowed the training of state-of-the-art deep neural networks.The authors present an efficient optical implementation of the ReLU in which a bidirectional transmissive optical switch that is controlled by an interferometric differential detector part of the forward propagating field implements both the rectifying linear forward response but also the derivative needed for gating the backwards propagating error needed for deep learning. The optical ReLU is the key component necessary to realize the vision of a physically implemented trainable optical machine learning technology.Such an optical deep learning system has the potential to scale up in performance to a level far in excess even the most optimistic projections for the further development of massively parallel super computers and will use much less energy by harnessing the efficient analog computational capabilities of coherent photons. The research team will design, fabricate, test, and demonstrate large arrays of these new optical ReLU devices using liquid-crystal-on-Silicon smart-pixel technology. A proof-of-concept laboratory demonstration of a self-aligning deep learning optical system will then be developed.This project will train a graduate student in the fields of machine learning and deep neural networks as well as CMOS device design and fabrication, liquid crystal chemistry and physics, coherent and nonlinear optics, lasers, and computer controlled experimental technology. Such a cross-disciplinary background will produce a nimble research leader capable of advancing the frontiers of both optical and machine learning science and technology. During this program the PI will continue to develop a Massively Open Online Course (MOOC) in the areas of Fourier optics and holography that will help to train a new generation of optical scientists.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在本提案中,作者引入了光学器件的新概念,光学整流线性单元(ReLU),并将其作为构建光学深度学习系统所需的关键使能技术。ReLU神经元的引入缓解了深度多层神经网络中梯度消失的问题,使最先进的深度神经网络的训练成为可能。作者提出了一种有效的光学实现ReLU,其中双向传输光开关由前向传播场的干涉差分检测器部分控制,既实现了线性前向响应的整流,又实现了深度学习所需的反向传播误差门控所需的导数。光学ReLU是实现可物理实现的可训练光学机器学习技术的关键组件。这种光学深度学习系统有潜力将性能扩展到一个水平,甚至远远超过对大规模并行超级计算机进一步发展的最乐观的预测,并且通过利用相干光子的高效模拟计算能力,将使用更少的能量。研究团队将使用硅上液晶智能像素技术设计、制造、测试和演示这些新型光学ReLU设备的大型阵列。然后将开发自对准深度学习光学系统的概念验证实验室演示。本项目将培养一名机器学习、深度神经网络、CMOS器件设计与制造、液晶化学与物理、相干与非线性光学、激光、计算机控制实验技术等领域的研究生。这样的跨学科背景将产生一个灵活的研究领导者,能够推进光学和机器学习科学和技术的前沿。在这个项目中,PI将继续开发傅里叶光学和全息领域的大规模开放在线课程(MOOC),这将有助于培养新一代光学科学家。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Convolutional Deep Optical Learning Devices and Architectures
卷积深度光学学习设备和架构
- DOI:
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Wagner, Kelvin H.;McComb, Sean
- 通讯作者:McComb, Sean
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kelvin Wagner其他文献
Squint-Free Fourier-Optical RF Beamforming Using a SHB Crystal as an Imaging Detector
使用 SHB 晶体作为成像探测器的无斜视傅立叶光学 RF 波束形成
- DOI:
10.1109/jstqe.2008.918657 - 发表时间:
2008 - 期刊:
- 影响因子:4.9
- 作者:
B. Braker;F. Schlottau;Kelvin Wagner - 通讯作者:
Kelvin Wagner
Demonstration of a spatial–spectral holographic LIDAR range-Doppler processor
- DOI:
10.1016/j.jlumin.2007.02.048 - 发表时间:
2007-11-01 - 期刊:
- 影响因子:
- 作者:
Friso Schlottau;Youzhi Li;Kelvin Wagner - 通讯作者:
Kelvin Wagner
Spectral hole burning for pulse repetition frequency analysis
- DOI:
10.1016/j.jlumin.2007.02.052 - 发表时间:
2007-11-01 - 期刊:
- 影响因子:
- 作者:
Max Colice;Jingyi Xiong;Kelvin Wagner - 通讯作者:
Kelvin Wagner
Kelvin Wagner的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kelvin Wagner', 18)}}的其他基金
NeTS: Small: Modally-multiplexed Spatio-Spectral DispersionCompensation and Routing for Photonic Networks
NeTS:小型:光子网络的模态复用空间光谱色散补偿和路由
- 批准号:
1817174 - 财政年份:2018
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Wide-field super-resolved DEEP 3-D microscopy
宽视场超分辨深度 3D 显微镜
- 批准号:
1134561 - 财政年份:2012
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
ITR: Revolutionary Computing Using Ultrafast Optical Soliton Switching
ITR:使用超快光孤子开关的革命性计算
- 批准号:
0082907 - 财政年份:2000
- 资助金额:
$ 35万 - 项目类别:
Continuing Grant
U.S.-France Cooperative Research: Multidimensional Photon Echo Optical Processing
美法合作研究:多维光子回波光学处理
- 批准号:
9910137 - 财政年份:2000
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
NSF Young Investigator: Integrating Photodetectors with Optoelectronic Devices Fabricated by Liquid Crystal Modulators into VLSI Circuits
NSF 青年研究员:将光电探测器与液晶调制器制造的光电器件集成到 VLSI 电路中
- 批准号:
9258088 - 财政年份:1992
- 资助金额:
$ 35万 - 项目类别:
Continuing Grant
Lossless Acoustooptic Permutation and Interconnection Network
无损声光排列互连网络
- 批准号:
9015752 - 财政年份:1990
- 资助金额:
$ 35万 - 项目类别:
Continuing Grant
相似海外基金
Deep Learning Approaches to Detect Glaucoma and Predict Progression from Spectral Domain Optical Coherence Tomography
通过谱域光学相干断层扫描检测青光眼并预测进展的深度学习方法
- 批准号:
10799087 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Clinical Development and Validation of a Novel Optical Facebow based on Deep Learning
基于深度学习的新型光学面弓的临床开发和验证
- 批准号:
10036298 - 财政年份:2022
- 资助金额:
$ 35万 - 项目类别:
Collaborative R&D
ERI: Sub-diffractive Optical Trapping Enabled by Deep-Learning-Assisted Metasurface Design
ERI:深度学习辅助超表面设计实现次衍射光捕获
- 批准号:
2138869 - 财政年份:2022
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
IMAT-ITCR Collaboration: Develop deep learning-based methods to identify subtypes of circulating tumor cells from optical microscope images
IMAT-ITCR 合作:开发基于深度学习的方法,从光学显微镜图像中识别循环肿瘤细胞的亚型
- 批准号:
10675886 - 财政年份:2022
- 资助金额:
$ 35万 - 项目类别:
Keratoconus Diagnosis, Staging, and Prediction of Progression Using Deep Learning of Anterior Segment Optical Coherence Tomography Maps.
使用眼前节光学相干断层扫描图的深度学习进行圆锥角膜诊断、分期和进展预测。
- 批准号:
21K09706 - 财政年份:2021
- 资助金额:
$ 35万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Benefits of Deep Reinforcement Learning for Resource Allocation in Optical Networks
深度强化学习对光网络资源分配的好处
- 批准号:
2575356 - 财政年份:2021
- 资助金额:
$ 35万 - 项目类别:
Studentship
Exploiting standardised tissue-mimicking phantoms to enable deep learning-based estimation of optical tissue properties on experimental photoacoustic data
利用标准化的组织模仿体模,实现基于实验光声数据的光学组织特性的基于深度学习的估计
- 批准号:
458342884 - 财政年份:2021
- 资助金额:
$ 35万 - 项目类别:
WBP Fellowship
Deep Learning Approaches to Detect Glaucoma and Predict Progression from Spectral Domain Optical Coherence Tomography
通过谱域光学相干断层扫描检测青光眼并预测进展的深度学习方法
- 批准号:
10219269 - 财政年份:2020
- 资助金额:
$ 35万 - 项目类别:
Deep Learning Approaches to Detect Glaucoma and Predict Progression from Spectral Domain Optical Coherence Tomography
通过谱域光学相干断层扫描检测青光眼并预测进展的深度学习方法
- 批准号:
10055661 - 财政年份:2020
- 资助金额:
$ 35万 - 项目类别:
Application of Deep Learning to understand neurodegenerative diseases using clinical optical imaging
应用深度学习通过临床光学成像了解神经退行性疾病
- 批准号:
2517852 - 财政年份:2020
- 资助金额:
$ 35万 - 项目类别:
Studentship