Higher Structure in Low-Dimensional Floer Theories
低维Floor理论中的高级结构
基本信息
- 批准号:1810893
- 负责人:
- 金额:$ 23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-01 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Humanity has been interested in the geometry of three-dimensional spaces since long before recorded history; since Einstein's work on general relativity, the geometry of four-dimensional spaces has also been of central importance, with applications now as ubiquitous as the global positioning system. Mathematicians have divided the study of spaces into two parts: qualitative questions (like whether a space has a hole in it), which is the field of topology, and quantitative questions (like the diameter of the hole), which is the field of geometry. Most, though not all, applications require quantitative answers, but before one can start on quantitative answers---the geometry---one needs to understand the qualitative behavior---low-dimensional topology, the focus of this National Science Foundation funded project. Indeed, in four-dimensions, even many of the most basic topological questions remain unanswered---questions about how many different simple spaces there are, how spaces can be cut up into simpler pieces, and what kinds of surfaces one can fit in given four-dimensional spaces. By using relations with other parts of mathematics and high-energy physics, this proposal seeks to advance human understanding by developing tools to answer some of these basic questions. This project, which focuses on applications of symplectic topology, algebraic topology, and representation theory to low-dimensional topology, has four interrelated goals. The first goal is to extend Lipshitz-Ozsváth-Thurston's "bordered Heegaard Floer homology" invariant of three-manifolds with boundary from the "hat" variant to the richer "minus" variant, for three-manifolds with torus boundary. The second goal is to prove a higher naturality result for Heegaard Floer homology, giving a functor from an appropriate quasi-category of decorated cobordisms to the quasi-category of chain complexes. The third goal is to prove new localization results relating the Heegaard Floer homology of a space with the Heegaard Floer homology of its branched covers. The fourth is to extend Lipshitz-Sarkar's stable homotopy refinement of Khovanov homology to cobordisms between knots and to other variants of Khovanov homology, including Lee homology. These tools are expected to have applications to concordance, homology cobordism, and other problems at the interface of three- and four-dimensional topology.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
早在有历史记载之前,人类就对三维空间的几何学感兴趣;自爱因斯坦的广义相对论工作以来,四维空间的几何学也发挥了核心作用,现在的应用与全球定位系统一样无处不在。数学家将对空间的研究分为两部分:定性问题(如空间中是否有洞)是拓扑学领域,定量问题(如洞的直径)是几何学领域。虽然不是全部,但大多数应用需要定量的答案,但在开始定量答案之前-几何--需要理解定性的行为-低维拓扑,这是国家科学基金会资助的项目的重点。事实上,在四维空间中,甚至许多最基本的拓扑问题仍然没有得到回答-关于有多少不同的简单空间,如何将空间分割成更简单的部分,以及在给定的四维空间中可以容纳什么样的表面的问题。通过利用与数学和高能物理的其他部分的关系,这项提议寻求通过开发工具来回答其中一些基本问题来促进人类的理解。这个项目专注于辛拓扑、代数拓扑学和表示论在低维拓扑学中的应用,有四个相互关联的目标。第一个目标是将Lipshitz-Ozsváth-瑟斯顿的具有边界的三维流形的“有边Heegaard Floer同调”不变量从“帽子”变量推广到更丰富的“负”变量,用于具有环面边界的三维流形。第二个目标是证明Heegaard Floer同调的一个更高的自然性结果,即给出一个从适当的装饰余边范畴到链复合体的拟范畴的函子。第三个目标是证明一个空间的Heegaard Floer同调与它的分支覆盖的Heegaard Floer同调有关的新的局部化结果。四是将Lipshitz-Sarkar对Khovanov同调的稳定同伦精化推广到纽结之间的余弦和Khovanov同调的其他变体,包括Lee同调。这些工具有望在三维和四维拓扑的界面上应用于协调、同源协边和其他问题。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A mixed invariant of nonorientable surfaces in equivariant Khovanov homology
等变霍瓦诺夫同调中不可定向曲面的混合不变量
- DOI:10.1090/tran/8736
- 发表时间:2022
- 期刊:
- 影响因子:1.3
- 作者:Lipshitz, Robert;Sarkar, Sucharit
- 通讯作者:Sarkar, Sucharit
Projective naturality in Heegaard Floer homology
Heegaard Florer 同调中的投影自然性
- DOI:10.2140/agt.2023.23.963
- 发表时间:2023
- 期刊:
- 影响因子:0.7
- 作者:Gartner, Michael
- 通讯作者:Gartner, Michael
Nontrivial Steenrod squares on prime, hyperbolic and satellite knots
素结、双曲结和卫星结上的非平凡 Steenrod 平方
- DOI:10.2140/agt.2022.22.1273
- 发表时间:2022
- 期刊:
- 影响因子:0.7
- 作者:Bodish, Holt
- 通讯作者:Bodish, Holt
Categorical lifting of the Jones polynomial: a survey
- DOI:10.1090/bull/1772
- 发表时间:2022-02
- 期刊:
- 影响因子:1.3
- 作者:M. Khovanov;Robert Lipshitz
- 通讯作者:M. Khovanov;Robert Lipshitz
A remark on quantum Hochschild homology
关于量子霍克希尔德同调的评论
- DOI:10.2140/obs.2022.5.265
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Lipshitz, Robert
- 通讯作者:Lipshitz, Robert
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robert Lipshitz其他文献
Cornered Heegaard Floer Homology
角赫加德弗洛尔同源性
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:1.9
- 作者:
Christopher L. Douglas;Robert Lipshitz;Ciprian Manolescu - 通讯作者:
Ciprian Manolescu
Chen–Khovanov Spectra for Tangles
缠结的 Chen–Khovanov 谱
- DOI:
10.1307/mmj/20195816 - 发表时间:
2019 - 期刊:
- 影响因子:0.9
- 作者:
T. Lawson;Robert Lipshitz;Sucharit Sarkar - 通讯作者:
Sucharit Sarkar
KHOVANOV SPECTRA FOR TANGLES
缠结的霍瓦诺夫谱
- DOI:
10.1017/s147474802100044x - 发表时间:
2017 - 期刊:
- 影响因子:0.9
- 作者:
T. Lawson;Robert Lipshitz;Sucharit Sarkar - 通讯作者:
Sucharit Sarkar
Torsion in linearized contact homology for Legendrian knots
勒让结线性化接触同调中的扭转
- DOI:
10.1112/blms.12992 - 发表时间:
2023 - 期刊:
- 影响因子:0.9
- 作者:
Robert Lipshitz;Lenhard L. Ng - 通讯作者:
Lenhard L. Ng
Heegaard Floer homology, double points and nice diagrams
Heegaard Floer 同调、双点和漂亮的图表
- DOI:
10.1090/crmp/049/13 - 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Robert Lipshitz - 通讯作者:
Robert Lipshitz
Robert Lipshitz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robert Lipshitz', 18)}}的其他基金
Floer for Three: Symplectic Methods in Low-Dimensional Topology
三人花:低维拓扑中的辛方法
- 批准号:
2204214 - 财政年份:2022
- 资助金额:
$ 23万 - 项目类别:
Continuing Grant
Gauge Theory, Floer Homology, and Topology
规范理论、弗洛尔同调和拓扑
- 批准号:
1830070 - 财政年份:2018
- 资助金额:
$ 23万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Floer Homotopy Theory
FRG:合作研究:弗洛尔同伦理论
- 批准号:
1560783 - 财政年份:2016
- 资助金额:
$ 23万 - 项目类别:
Standard Grant
CAREER: Floer-theoretic approaches to low-dimensional topology
职业:低维拓扑的弗洛尔理论方法
- 批准号:
1642067 - 财政年份:2016
- 资助金额:
$ 23万 - 项目类别:
Continuing Grant
CAREER: Floer-theoretic approaches to low-dimensional topology
职业:低维拓扑的弗洛尔理论方法
- 批准号:
1149800 - 财政年份:2012
- 资助金额:
$ 23万 - 项目类别:
Continuing Grant
Structure of Low-Dimensional Floer Homologies
低维Floer同调结构
- 批准号:
0905796 - 财政年份:2009
- 资助金额:
$ 23万 - 项目类别:
Standard Grant
相似海外基金
Wide-area low-cost sustainable ocean temperature and velocity structure extraction using distributed fibre optic sensing within legacy seafloor cables
使用传统海底电缆中的分布式光纤传感进行广域低成本可持续海洋温度和速度结构提取
- 批准号:
NE/Y003365/1 - 财政年份:2024
- 资助金额:
$ 23万 - 项目类别:
Research Grant
Resolving the Structure of Photodissociation Regions at Low Metallicity
解析低金属丰度下光解离区域的结构
- 批准号:
2308274 - 财政年份:2023
- 资助金额:
$ 23万 - 项目类别:
Standard Grant
Science for Boundary Lubrication - Essence of Low Friction Mechanism Based on Structure and Dynamics of Additive Adsorption Layer
边界润滑科学——基于添加剂吸附层结构和动力学的低摩擦机制本质
- 批准号:
23H05448 - 财政年份:2023
- 资助金额:
$ 23万 - 项目类别:
Grant-in-Aid for Scientific Research (S)
Research on high-density positive electrodes via low crystalline structure control
低晶结构控制高密度正极研究
- 批准号:
23H02068 - 财政年份:2023
- 资助金额:
$ 23万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Mechanistic structure-function relationships for paraspinal muscle fat infiltration in chronic low back pain patients
慢性腰痛患者椎旁肌肉脂肪浸润的机制结构与功能关系
- 批准号:
10660027 - 财政年份:2023
- 资助金额:
$ 23万 - 项目类别:
Sensor-driven durable low carbon concrete structure
传感器驱动的耐用低碳混凝土结构
- 批准号:
2886407 - 财政年份:2023
- 资助金额:
$ 23万 - 项目类别:
Studentship
Development of a low-energy positron diffraction (LEPD) station and its application to surface structure determination of spintronic heavy-element 2D materials
低能正电子衍射(LEPD)站的研制及其在自旋电子重元素二维材料表面结构测定中的应用
- 批准号:
23K17150 - 财政年份:2023
- 资助金额:
$ 23万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Constraints from multiple low frequency data on the long wavelength density structure in the deep mantle
多个低频数据对深部地幔长波长密度结构的约束
- 批准号:
2326226 - 财政年份:2022
- 资助金额:
$ 23万 - 项目类别:
Continuing Grant
Future Applications Based on Newly Developed Low Loss Guiding Structure
基于新开发的低损耗引导结构的未来应用
- 批准号:
RGPIN-2017-06711 - 财政年份:2022
- 资助金额:
$ 23万 - 项目类别:
Discovery Grants Program - Individual
Investigating Hadron Structure at Low and Medium Energies
研究低能和中能的强子结构
- 批准号:
SAPIN-2022-00025 - 财政年份:2022
- 资助金额:
$ 23万 - 项目类别:
Subatomic Physics Envelope - Individual