Floer for Three: Symplectic Methods in Low-Dimensional Topology
三人花:低维拓扑中的辛方法
基本信息
- 批准号:2204214
- 负责人:
- 金额:$ 33.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Research under this grant furthers our understanding of curves, surfaces, 3-dimensional spaces, and 4-dimensional spaces, by focusing on the interplay between these different dimensions. Relationships between different dimensions arise in two ways. One way to study complicated 3- or 4-dimensional spaces is to decompose them into simpler pieces; the decomposition happens along lower-dimensional spaces, like surfaces. These are complicated versions of the principle that you cut a 3-dimensional watermelon by using a flat, 2-dimensional knife. Trying to do this leads one to ask in which ways low-dimensional spaces can sit inside high-dimensional ones. For example, 1-dimensional shoelaces can be knotted or unknotted; it was recently discovered that a 3-dimensional watermelon sitting in 4-space can also be knotted. This involves developing aspects of differential equations and abstract algebra. One long-term goal of the research project is to have a computer program that can compute certain subtle invariants of 4-dimensional spaces coming from counting solutions to differential equations from theoretical physics, the Seiberg-Witten equations. The grant will also support training graduate students in these topics, writing a book introducing some of them to graduate students and advanced undergraduates, outreach activities to share the excitement of geometry and topology with K-12 students, and a website to help other researchers use non-photorealistic raytracing to draw useful figures in their own papers.The research involves a number of specific projects. One is to further develop an extension of bordered Heegaard Floer homology to the "minus" version of Heegaard Floer homology. Bordered Heegaard Floer homology is a version of Heegaard Floer homology for 3-manifolds with boundary; many aspects of the theory are currently only defined for the simpler "hat" version of Heegaard Floer homology. Another is to develop new invariants of embedded non-orientable surfaces in 4-space, using variants on Khovanov homology. A third is to apply Floer homotopy theory to questions in equivariant 3-dimensional topology, and a fourth is to study relationships between Floer homology and the mapping class groups of surfaces.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
根据这项补助金的研究,通过关注这些不同维度之间的相互作用,进一步加深了我们对曲线,曲面,三维空间和四维空间的理解。不同维度之间的关系以两种方式出现。研究复杂的3维或4维空间的一种方法是将它们分解成更简单的部分;分解发生在沿着较低维的空间,如曲面。这些是复杂的版本的原则,你切一个三维的西瓜,用一个平面,二维刀。尝试这样做会导致人们问,低维空间可以以何种方式位于高维空间内。例如,一维鞋带可以打结或解开;最近发现,位于4空间的三维西瓜也可以打结。这涉及微分方程和抽象代数的发展方面。该研究项目的一个长期目标是拥有一个计算机程序,可以计算来自理论物理学微分方程(Seiberg-Witten方程)的某些微妙的四维空间不变量。该基金还将资助研究生在这些主题方面的培训,编写一本书,向研究生和高年级本科生介绍其中一些人,开展外联活动,与K-12学生分享几何和拓扑学的兴奋,并建立一个网站,帮助其他研究人员使用非真实感光线追踪在自己的论文中绘制有用的图形。一个是进一步发展扩展的边界Heegaard Floer同源性的“减”版本的Heegaard Floer同源性。加边Heegaard Floer同调是Heegaard Floer同调的一个版本,适用于有边界的三维流形;该理论的许多方面目前仅定义为Heegaard Floer同调的简单“帽子”版本。另一个是利用Khovanov同调的变式,在4-空间中建立嵌入不可定向曲面的新的不变量。第三个是应用Floer同伦理论的问题,在等变的三维拓扑结构,第四个是研究Floer同源性和映射类groups的surfaces.This奖项之间的关系反映了NSF的法定使命,并已被认为是值得通过评估使用基金会的智力价值和更广泛的影响审查标准的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robert Lipshitz其他文献
Cornered Heegaard Floer Homology
角赫加德弗洛尔同源性
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:1.9
- 作者:
Christopher L. Douglas;Robert Lipshitz;Ciprian Manolescu - 通讯作者:
Ciprian Manolescu
Chen–Khovanov Spectra for Tangles
缠结的 Chen–Khovanov 谱
- DOI:
10.1307/mmj/20195816 - 发表时间:
2019 - 期刊:
- 影响因子:0.9
- 作者:
T. Lawson;Robert Lipshitz;Sucharit Sarkar - 通讯作者:
Sucharit Sarkar
KHOVANOV SPECTRA FOR TANGLES
缠结的霍瓦诺夫谱
- DOI:
10.1017/s147474802100044x - 发表时间:
2017 - 期刊:
- 影响因子:0.9
- 作者:
T. Lawson;Robert Lipshitz;Sucharit Sarkar - 通讯作者:
Sucharit Sarkar
Torsion in linearized contact homology for Legendrian knots
勒让结线性化接触同调中的扭转
- DOI:
10.1112/blms.12992 - 发表时间:
2023 - 期刊:
- 影响因子:0.9
- 作者:
Robert Lipshitz;Lenhard L. Ng - 通讯作者:
Lenhard L. Ng
Heegaard Floer homology, double points and nice diagrams
Heegaard Floer 同调、双点和漂亮的图表
- DOI:
10.1090/crmp/049/13 - 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Robert Lipshitz - 通讯作者:
Robert Lipshitz
Robert Lipshitz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robert Lipshitz', 18)}}的其他基金
Gauge Theory, Floer Homology, and Topology
规范理论、弗洛尔同调和拓扑
- 批准号:
1830070 - 财政年份:2018
- 资助金额:
$ 33.78万 - 项目类别:
Standard Grant
Higher Structure in Low-Dimensional Floer Theories
低维Floor理论中的高级结构
- 批准号:
1810893 - 财政年份:2018
- 资助金额:
$ 33.78万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Floer Homotopy Theory
FRG:合作研究:弗洛尔同伦理论
- 批准号:
1560783 - 财政年份:2016
- 资助金额:
$ 33.78万 - 项目类别:
Standard Grant
CAREER: Floer-theoretic approaches to low-dimensional topology
职业:低维拓扑的弗洛尔理论方法
- 批准号:
1642067 - 财政年份:2016
- 资助金额:
$ 33.78万 - 项目类别:
Continuing Grant
CAREER: Floer-theoretic approaches to low-dimensional topology
职业:低维拓扑的弗洛尔理论方法
- 批准号:
1149800 - 财政年份:2012
- 资助金额:
$ 33.78万 - 项目类别:
Continuing Grant
Structure of Low-Dimensional Floer Homologies
低维Floer同调结构
- 批准号:
0905796 - 财政年份:2009
- 资助金额:
$ 33.78万 - 项目类别:
Standard Grant
相似海外基金
Robust Transient State Estimation for Three-Phase Power Systems
三相电力系统的鲁棒瞬态估计
- 批准号:
2330377 - 财政年份:2024
- 资助金额:
$ 33.78万 - 项目类别:
Standard Grant
CAREER: Evaluating Molecular Homogeneity in Three Nanometric Dimensions Using Nano-Projectile Secondary Ion Mass Spectrometry
职业:使用纳米弹丸二次离子质谱评估三个纳米维度的分子均匀性
- 批准号:
2340430 - 财政年份:2024
- 资助金额:
$ 33.78万 - 项目类别:
Continuing Grant
Realizing Carbon Neutrality and Resource/Energy Self-sufficiency in Wastewater Treatment Plants by Integrating Three Functional Granular Sludges
通过整合三种功能的颗粒污泥实现污水处理厂的碳中和和资源/能源自给自足
- 批准号:
24H00767 - 财政年份:2024
- 资助金额:
$ 33.78万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Magmatic system structure and seismicity of the Three Sisters volcanic complex
三姐妹火山杂岩岩浆系统结构与地震活动
- 批准号:
2342525 - 财政年份:2024
- 资助金额:
$ 33.78万 - 项目类别:
Continuing Grant
Three dimensional material flow visualization in dissimilar friction stir welding by X-ray transmission imaging
通过 X 射线透射成像实现异种材料搅拌摩擦焊中的三维材料流动可视化
- 批准号:
24K17532 - 财政年份:2024
- 资助金额:
$ 33.78万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Three-Dimensional Multilayer Nanomagnetic Arrays for Neuromorphic Low-Energy Magnonic Processing
用于神经形态低能磁处理的三维多层纳米磁性阵列
- 批准号:
EP/Y003276/1 - 财政年份:2024
- 资助金额:
$ 33.78万 - 项目类别:
Research Grant
3DIr4E: Three-Dimensional low Ir loading anodes For proton exchange membrane water Electrolyzers
3DIr4E:用于质子交换膜水电解槽的三维低 Ir 负载阳极
- 批准号:
EP/Z001382/1 - 财政年份:2024
- 资助金额:
$ 33.78万 - 项目类别:
Fellowship
I-Corps: Vision analysis system using inferred three-dimensional data to analyze and correct a user’s pose in relation to 3D space
I-Corps:视觉分析系统,使用推断的三维数据来分析和纠正用户相对于 3D 空间的姿势
- 批准号:
2403992 - 财政年份:2024
- 资助金额:
$ 33.78万 - 项目类别:
Standard Grant
Identifying the role of sensorimotor feedback as a mechanism for language learning in the first three years of life
确定感觉运动反馈作为生命前三年语言学习机制的作用
- 批准号:
EP/X042405/1 - 财政年份:2024
- 资助金额:
$ 33.78万 - 项目类别:
Research Grant
Extremely efficient fully three-dimensional hydrodynamic simulations of supernova remnants for the new age of microcalorimetric X-ray astronomy
针对微量热 X 射线天文学新时代的超新星遗迹进行极其高效的全三维流体动力学模拟
- 批准号:
24K07092 - 财政年份:2024
- 资助金额:
$ 33.78万 - 项目类别:
Grant-in-Aid for Scientific Research (C)