RUI:Curve Counting Theories and Their Correspondences
RUI:曲线计数理论及其对应关系
基本信息
- 批准号:1810969
- 负责人:
- 金额:$ 18.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-01 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Enumerative geometry is a classical project, encompassing questions that date back to antiquity (how many conics, for example, pass through five given points in the plane?) as well as subjects of contemporary research. Despite their long history, many of these questions remained inaccessible until a series of breakthroughs in the late twentieth century that culminated in the development of Gromov-Witten theory. The key new ideas were that problems of enumerative geometry are best interpreted in terms of intersection theory on a moduli space, and that insights from the physics of string theory reveal elegant patterns in families of enumerations that were previously unobserved by the mathematics community. The PI's research program involves developing the intersection theory of a particularly fundamental moduli space - the Deligne-Mumford moduli space of curves - as well as producing rigorous mathematical frameworks for some of the correspondences between theories that physicists have predicted.A major part of this research program is devoted to studying the Chow ring of the moduli space of curves. Although a full picture of the Chow ring of this space currently seems out of reach, there is a subring known as the "tautological ring" that contains nearly every geometrically-interesting class yet that admits an explicit, finite set of additive generators. The PI has been an active contributor to the study of the relations among these generators, in joint work with Felix Janda (University of Michigan), Sam Grushevsky (Stony Brook University), and Dmitry Zakharov (Central Michigan University). In forthcoming work, she plans to develop tautological intersection theory both computationally (producing algorithms for calculating certain desirable expressions for tautological classes in terms of the generators) and theoretically (seeking new tautological expressions for classes such as the hyperelliptic locus). Much of this work will be carried out in collaboration with student researchers. A second central component of the PI's research is the mathematical proof and extension of equivalences proposed by physics. For example, in joint work with Felix Janda and Yongbin Ruan (University of Michigan), she has proven a wall-crossing formula relating Gromov-Witten theory to the theory of quasimaps, a relationship that is closely related to the famous physical phenomenon known as mirror symmetry. In future work, she will extend this wall-crossing formula to new cases and use it to attack another physical conjecture: the Landau-Ginzburg/Calabi-Yau correspondence. She will also work, in collaboration with Alexandr Buryak (University of Leeds) and Ran Tessler (ETH Zurich), toward the theoretical development of a version of r-spin theory for curves with boundary, with an ultimate goal of generalizing Witten's r-spin conjecture to that setting.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
列举几何是一个经典的项目,包含了可以追溯到古代的问题(例如,有多少二次曲线通过平面上的五个给定点?)以及当代研究的主题。尽管这些问题有很长的历史,但许多问题直到20世纪末的一系列突破才得以解决,这些突破最终导致了格罗莫夫-维滕理论的发展。关键的新想法是,枚举几何问题最好地用模空间上的交集理论来解释,来自弦理论物理学的见解揭示了数学界以前没有观察到的枚举族中的优雅模式。PI的研究计划包括发展一个特别基本的模空间--Deligne-Mumford模空间的交集理论,以及为物理学家预测的一些理论之间的对应建立严格的数学框架。这个研究计划的主要部分致力于研究曲线模空间的Chow环。虽然这个空间的Chow环的全貌目前看起来还不太可能,但有一个被称为“重言环”的子环,它几乎包含了每一个几何有趣的类,它允许一个显式的,有限的加性生成元集合。国际和平研究所与Felix Janda(密歇根大学)、Sam Grushevsky(石溪大学)和Dmitry Zakharov(中密歇根大学)共同工作,为研究这些发电机之间的关系作出了积极贡献。在接下来的工作中,她计划发展重言式交集理论,既在计算上(产生算法,根据生成器计算重言式类的某些理想表达式),也在理论上(为超椭圆轨迹等类寻找新的重言式表达式)。这项工作的大部分将与学生研究人员合作进行。PI研究的第二个核心部分是由物理学提出的等价性的数学证明和扩展。例如,在与密歇根大学的菲利克斯·扬达和阮永斌的合作中,她证明了一个将Gromov-Witten理论与准映射理论联系起来的跨墙公式,这种关系与著名的被称为镜像对称的物理现象密切相关。在未来的工作中,她将把这个跨越墙的公式推广到新的案例,并用它来破解另一个物理猜想:兰道-金兹堡/卡拉比-尤对应关系。她还将与利兹大学的Alexandr Buryak和苏黎世ETH的Ran Tessler合作,致力于为有边界的曲线开发一个版本的r-自旋理论,最终目标是将Witten的r-自旋猜想推广到该背景下。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Open 𝑟-Spin Theory I: Foundations
- DOI:10.1093/imrn/rnaa345
- 发表时间:2021-02
- 期刊:
- 影响因子:1
- 作者:A. Buryak;E. Clader;Ran J. Tessler
- 通讯作者:A. Buryak;E. Clader;Ran J. Tessler
Wall-crossing in genus-zero hybrid theory
- DOI:10.1515/advgeom-2021-0010
- 发表时间:2018-06
- 期刊:
- 影响因子:0.5
- 作者:E. Clader;Dustin Ross
- 通讯作者:E. Clader;Dustin Ross
Higher-genus wall-crossing in the gauged linear sigma model
- DOI:10.1215/00127094-2020-0053
- 发表时间:2017-06
- 期刊:
- 影响因子:2.5
- 作者:E. Clader;F. Janda;Y. Ruan
- 通讯作者:E. Clader;F. Janda;Y. Ruan
Boundary complexes of moduli spaces of curves in higher genus
高阶曲线模空间的边界复形
- DOI:10.1090/proc/15423
- 发表时间:2022
- 期刊:
- 影响因子:1
- 作者:Clader, Emily;Luber, Dante;Quillin, Kyla
- 通讯作者:Quillin, Kyla
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Emily Clader其他文献
Holomorphic forms and non-tautological cycles on moduli spaces of curves
曲线模空间上的全纯形式与非平凡圈
- DOI:
10.1007/s00029-025-01038-5 - 发表时间:
2025-05-04 - 期刊:
- 影响因子:1.200
- 作者:
Veronica Arena;Samir Canning;Emily Clader;Richard Haburcak;Amy Q. Li;Siao Chi Mok;Carolina Tamborini - 通讯作者:
Carolina Tamborini
Why Twelve Tones? The Mathematics of Musical Tuning
- DOI:
10.1007/s00283-017-9759-1 - 发表时间:
2018-08-13 - 期刊:
- 影响因子:0.400
- 作者:
Emily Clader - 通讯作者:
Emily Clader
Emily Clader的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Emily Clader', 18)}}的其他基金
CAREER:Combinatorial Intersection Theory on Moduli Spaces of Curves
职业:曲线模空间的组合交集理论
- 批准号:
2137060 - 财政年份:2022
- 资助金额:
$ 18.9万 - 项目类别:
Continuing Grant
相似海外基金
膵管内乳頭粘液性腫瘍におけるTime intensity curve解析による新たな診断指標確立
时间强度曲线分析建立胰腺导管内乳头状粘液性肿瘤新诊断指标
- 批准号:
24K21142 - 财政年份:2024
- 资助金额:
$ 18.9万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: New methods in curve counting
职业:曲线计数的新方法
- 批准号:
2422291 - 财政年份:2024
- 资助金额:
$ 18.9万 - 项目类别:
Continuing Grant
CAREER: New methods in curve counting
职业:曲线计数的新方法
- 批准号:
2239320 - 财政年份:2023
- 资助金额:
$ 18.9万 - 项目类别:
Continuing Grant
Proactive Safety Improvement via crowdsourcing Live Curve Safety Assessment
通过众包实时曲线安全评估主动改进安全
- 批准号:
2306684 - 财政年份:2023
- 资助金额:
$ 18.9万 - 项目类别:
Standard Grant
I-Corps: Curve safety assessment solution to help transportation agencies with road curve safety management
I-Corps:弯道安全评估解决方案,帮助运输机构进行道路弯道安全管理
- 批准号:
2309336 - 财政年份:2023
- 资助金额:
$ 18.9万 - 项目类别:
Standard Grant
Barley malting a steep learning curve
大麦麦芽的学习曲线陡峭
- 批准号:
BB/Y51360X/1 - 财政年份:2023
- 资助金额:
$ 18.9万 - 项目类别:
Training Grant
Next-generation radiocarbon calibration: Incorporating information on calibration curve covariance
下一代放射性碳校准:纳入校准曲线协方差信息
- 批准号:
NE/X009815/1 - 财政年份:2023
- 资助金额:
$ 18.9万 - 项目类别:
Research Grant
Motion analysis using MRI ~Using cumulative ratio curve~
使用MRI进行运动分析~利用累积比率曲线~
- 批准号:
23K16548 - 财政年份:2023
- 资助金额:
$ 18.9万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Essays on the Energy Sector and the Environmental Kuznets Curve Hypothesis: Macro and Micro perspectives
能源部门和环境库兹涅茨曲线假说论文:宏观和微观视角
- 批准号:
2745198 - 财政年份:2022
- 资助金额:
$ 18.9万 - 项目类别:
Studentship














{{item.name}}会员




