Innovated Statistical Inference for Complex and High-Dimensional Data
针对复杂和高维数据的创新统计推断
基本信息
- 批准号:1811552
- 负责人:
- 金额:$ 13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-01 至 2023-02-28
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Increasing amounts of high-dimensional data are being collected and analyzed in a diverse range of research areas. In practice, data scientists face significant analytic challenges when exploring and understanding the complex and high-dimensional data. Statistical inference of high-dimensional data is essential in theoretical and applied research of statistics, biostatistics, econometrics, geoscience, machine learning, signal processing, and many others. Big Data has rapidly reshaped statistical modeling and revolutionized statistical analysis. There exist many challenges and open problems, whose solutions require innovative ideas and techniques. This project will address new challenges arising in high-dimensional hypothesis testing. Testing high-dimensional structural parameters plays a vital role in estimating and quantifying uncertainty, making informed choices, and discovering knowledge from Big Data. In this project, novel statistical methods and theory are developed to study three important topics of high-dimensional hypothesis testing: (1) power enhancement tests for high-dimensional covariance matrices, (2) power enhancement tests for high-dimensional mean vectors, and (3) nonlinear statistical dependence of high-dimensional data. The research outcomes will provide powerful analytic tools for solving open problems in three research topics. The methods and theory are general, and they can be directly extended to address other important hypothesis testings for high-dimensional data such as testing in high-dimensional spiked models. Software packages will be developed to make the research outcomes readily available to other researchers and practitioners.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
越来越多的高维数据被收集和分析在不同的研究领域。在实践中,数据科学家在探索和理解复杂和高维数据时面临着重大的分析挑战。高维数据的统计推断在统计学、生物统计学、计量经济学、地球科学、机器学习、信号处理等理论和应用研究中是必不可少的。大数据迅速重塑了统计建模,并彻底改变了统计分析。存在着许多挑战和开放性问题,其解决需要创新的理念和技术。该项目将解决高维假设检验中出现的新挑战。测试高维结构参数在估计和量化不确定性、做出明智的选择以及从大数据中发现知识方面起着至关重要的作用。本计画将发展新的统计方法与理论来研究高维假设检验的三个重要课题:(1)高维协方差矩阵的功效增强检验,(2)高维均值向量的功效增强检验,以及(3)高维数据的非线性统计相依性。研究成果将为解决三个研究主题中的开放问题提供强大的分析工具。这些方法和理论是通用的,它们可以直接扩展到解决其他重要的假设检验的高维数据,如测试在高维spiked模型。该奖项反映了NSF的法定使命,并被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lingzhou Xue其他文献
Model‐based clustering of semiparametric temporal exponential‐family random graph models
半参数时间指数族随机图模型的基于模型的聚类
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:1.7
- 作者:
Kevin H. Lee;Amal Agarwal;A. Y. Zhang;Lingzhou Xue - 通讯作者:
Lingzhou Xue
Optimal estimation of sparse correlation matrices of semiparametric Gaussian copulas
半参数高斯联结稀疏相关矩阵的最优估计
- DOI:
10.4310/sii.2014.v7.n2.a5 - 发表时间:
2014 - 期刊:
- 影响因子:0.8
- 作者:
Lingzhou Xue;H. Zou - 通讯作者:
H. Zou
Rank-based tapering estimation of bandable correlation matrices
可带相关矩阵的基于秩的锥形估计
- DOI:
10.5705/ss.2012.052 - 发表时间:
2013 - 期刊:
- 影响因子:1.4
- 作者:
Lingzhou Xue;H. Zou - 通讯作者:
H. Zou
Multi-parametric thrombus profiling microfluidics detects intensified biomechanical thrombogenesis associated with hypertension and aging
多参数血栓分析微流控技术检测到与高血压和衰老相关的强化生物力学血栓形成
- DOI:
10.1038/s41467-024-53069-9 - 发表时间:
2024-10-21 - 期刊:
- 影响因子:15.700
- 作者:
Misbahud Din;Souvik Paul;Sana Ullah;Haoyi Yang;Rong-Guang Xu;Nurul Aisha Zainal Abidin;Allan Sun;Yiyao Catherine Chen;Rui Gao;Bari Chowdhury;Fangyuan Zhou;Stephenie Rogers;Mariel Miller;Atreyee Biswas;Liang Hu;Zhichao Fan;Christopher Zahner;Jing Fan;Zi Chen;Megan Berman;Lingzhou Xue;Lining Arnold Ju;Yunfeng Chen - 通讯作者:
Yunfeng Chen
Theoretical Guarantees for Sparse Principal Component Analysis based on the Elastic Net
基于弹性网络的稀疏主成分分析的理论保证
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Teng Zhang;Haoyi Yang;Lingzhou Xue - 通讯作者:
Lingzhou Xue
Lingzhou Xue的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lingzhou Xue', 18)}}的其他基金
Collaborative Research: New Methods, Theory and Applications for Nonsmooth Manifold-Based Learning
协作研究:非平滑流形学习的新方法、理论和应用
- 批准号:
1953189 - 财政年份:2020
- 资助金额:
$ 13万 - 项目类别:
Continuing Grant
Collaborative Research: CIF: Small: New Theory and Applications of Non-smooth and Non-Lipschitz Riemannian Optimization
合作研究:CIF:小:非光滑和非Lipschitz黎曼优化的新理论和应用
- 批准号:
2007823 - 财政年份:2020
- 资助金额:
$ 13万 - 项目类别:
Standard Grant
Collaborative Research: New Statistical Methods and Theory for High-Dimensional Data
合作研究:高维数据的新统计方法和理论
- 批准号:
1505256 - 财政年份:2015
- 资助金额:
$ 13万 - 项目类别:
Continuing Grant
相似海外基金
CAREER: Statistical foundations of particle tracking and trajectory inference
职业:粒子跟踪和轨迹推断的统计基础
- 批准号:
2339829 - 财政年份:2024
- 资助金额:
$ 13万 - 项目类别:
Continuing Grant
CAREER: Statistical Inference in Observational Studies -- Theory, Methods, and Beyond
职业:观察研究中的统计推断——理论、方法及其他
- 批准号:
2338760 - 财政年份:2024
- 资助金额:
$ 13万 - 项目类别:
Continuing Grant
STATISTICAL AND COMPUTATIONAL THRESHOLDS IN SPIN GLASSES AND GRAPH INFERENCE PROBLEMS
自旋玻璃和图推理问题的统计和计算阈值
- 批准号:
2347177 - 财政年份:2024
- 资助金额:
$ 13万 - 项目类别:
Standard Grant
Collaborative Research: Urban Vector-Borne Disease Transmission Demands Advances in Spatiotemporal Statistical Inference
合作研究:城市媒介传播疾病传播需要时空统计推断的进步
- 批准号:
2414688 - 财政年份:2024
- 资助金额:
$ 13万 - 项目类别:
Continuing Grant
CAREER: Distribution-Free and Adaptive Statistical Inference
职业:无分布和自适应统计推断
- 批准号:
2338464 - 财政年份:2024
- 资助金额:
$ 13万 - 项目类别:
Continuing Grant
CAREER: Statistical Inference in High Dimensions using Variational Approximations
职业:使用变分近似进行高维统计推断
- 批准号:
2239234 - 财政年份:2023
- 资助金额:
$ 13万 - 项目类别:
Continuing Grant
CAREER: Towards Tight Guarantees of Markov Chain Sampling Algorithms in High Dimensional Statistical Inference
职业:高维统计推断中马尔可夫链采样算法的严格保证
- 批准号:
2237322 - 财政年份:2023
- 资助金额:
$ 13万 - 项目类别:
Continuing Grant
Unravel machine learning blackboxes -- A general, effective and performance-guaranteed statistical framework for complex and irregular inference problems in data science
揭开机器学习黑匣子——针对数据科学中复杂和不规则推理问题的通用、有效和性能有保证的统计框架
- 批准号:
2311064 - 财政年份:2023
- 资助金额:
$ 13万 - 项目类别:
Standard Grant
Development of statistical inference of extended Hawkes processes including missing data problem
扩展霍克斯过程的统计推断的发展,包括缺失数据问题
- 批准号:
23H03358 - 财政年份:2023
- 资助金额:
$ 13万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Observational entropy and statistical inference: a mathematical study
观察熵和统计推断:数学研究
- 批准号:
23K03230 - 财政年份:2023
- 资助金额:
$ 13万 - 项目类别:
Grant-in-Aid for Scientific Research (C)