RUI: Flows of G2-Structures on Manifolds

RUI:流形上的 G2 结构流

基本信息

  • 批准号:
    1811754
  • 负责人:
  • 金额:
    $ 20.12万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-07-15 至 2023-06-30
  • 项目状态:
    已结题

项目摘要

One of the most enduring scientific problems is to understand the properties of the universe and the laws that govern it. Ever since Einstein's theory of general relativity, it was understood that there is a very close link between the physics and the geometry of the universe. However, most recent physical theories, such as superstring theory and M-theory, show that the physical properties of 4-dimensional spacetime may be described in terms of the geometry of hidden six- or seven-dimensional spaces. In this project, the PI will study the properties of a particular kind of seven-dimensional spaces which appear in these theories, known as manifolds with a G2-structure. The main goal of this project is to further develop the theory of deformations or `flows' of G2-structures which will effect smooth transitions between different classes of G2-structures. The PI anticipates that this will pave the way towards giving sufficient conditions for existence of torsion-free G2-structures, which is one of the most significant open problems in differential geometry. (A G2-structure defines, at each point of the manifold, a `dot product' of vectors -- a way of multiplying two vectors to get a scalar -- as well as a `cross product' that allows one to multiply two vectors to produce a third vector. Torsion-free G2-structures are those for which these dot and cross products are maximally compatible.) As part of the project, the PI will train undergraduate research assistants and will involve them in the activities of the Experimental Algebra & Geometry Lab, of which the PI is a co-director. The lab's activities will combine training, mentoring, research, and outreach to promote mathematics at various levels -- starting at K-12, the broader community, and going all the way to graduate level.In his prior work, the PI introduced the modified Laplacian coflow of co-closed G2-structures that rectified the non-parabolicity of the standard Laplacian coflow. The PI also introduced a description of G2-structures in terms of octonion bundles that interpreted the torsion of a G2-structure as an octonionic connection and the choice of a G2-structure within the same metric class as a choice of gauge. G2-structures with divergence-free torsion were then interpreted as critical points of an energy functional and as an analogue of the Coulomb gauge. This project builds upon this prior work. The main goal is to prove existence properties for the standard Laplacian coflow. This will be accomplished by first proving the existence of G2-structures with divergence-free torsion within a fixed metric class using harmonic map techniques. This will then be used as a gauge-fixing condition for the Laplacian coflow, which will relate it to the modified coflow for which existence is known. The second objective of this project is to study and construct other significant flows of G2-structures, with the aim of proving existence and stability under appropriate conditions and analyzing the behavior of these flows on homogeneous manifolds. The third objective of this project is to study the properties of octonion-bundle-valued differential forms and to obtain an octonion-valued analogue of Dolbeault cohomology.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
最持久的科学问题之一是了解宇宙的属性和支配宇宙的定律。自从爱因斯坦提出广义相对论以来,人们就知道宇宙的物理学和几何学之间存在着非常密切的联系。然而,最近的物理理论,例如超弦理论和M理论,表明4维时空的物理性质可以用隐藏的六维或七维空间的几何形状来描述。在这个项目中,PI 将研究这些理论中出现的一种特殊七维空间的属性,称为具有 G2 结构的流形。 该项目的主要目标是进一步发展 G2 结构的变形或“流动”理论,这将影响不同类别的 G2 结构之间的平滑过渡。 PI 预计这将为无扭转 G2 结构的存在提供足够的条件铺平道路,这是微分几何中最重要的开放问题之一。 (G2 结构在流形的每个点定义了向量的“点积”(一种将两个向量相乘以获得标量的方法)以及“叉积”,允许将两个向量相乘以产生第三个向量。无扭转 G2 结构是这些点积和叉积最大程度兼容的结构。)作为该项目的一部分,PI 将培训本科生研究 助理,并将让他们参与实验代数和几何实验室的活动,PI 是该实验室的联合主任。该实验室的活动将结合培训、指导、研究和推广,以促进各个级别的数学发展——从 K-12 开始,更广泛的社区,一直到研究生水平。在他之前的工作中,PI 引入了共闭 G2 结构的修改拉普拉斯协流,纠正了标准拉普拉斯协流的非抛物线性。 PI 还引入了用八元数丛来描述 G2 结构,将 G2 结构的扭转解释为八元连接,并将同一公制类别中 G2 结构的选择解释为规范的选择。然后,具有无散度扭转的 G2 结构被解释为能量泛函的临界点和库仑计的类似物。该项目建立在先前工作的基础上。主要目标是证明标准拉普拉斯协流的存在属性。这将通过首先使用调和映射技术证明固定度量类别内具有无散度扭转的 G2 结构的存在来实现。然后,这将用作拉普拉斯协同流的规范固定条件,这将把它与已知存在的修改后的协同流联系起来。该项目的第二个目标是研究和构建其他重要的 G2 结构流,旨在证明适当条件下的存在性和稳定性,并分析这些流在齐次流形上的行为。该项目的第三个目标是研究八元数丛值微分形式的性质,并获得 Dolbeault 上同调的八元数值类似物。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Aspects of non-associative gauge theory
非结合规范理论的各个方面
Estimates and monotonicity for a heat flow of isometric $$G_{2}$$ G 2 -structures
等轴 $$G_{2}$$ G 2 结构热流的估计和单调性
The Coulomb Gauge in Non-associative Gauge Theory
非结合规范理论中的库仑规范
  • DOI:
    10.1007/s12220-023-01445-0
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Grigorian, Sergey
  • 通讯作者:
    Grigorian, Sergey
Isometric fows of G2-structures
G2 结构的等距流动
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Grigorian, Sergey
  • 通讯作者:
    Grigorian, Sergey
Smooth loops and loop bundles
平滑环和环束
  • DOI:
    10.1016/j.aim.2021.108078
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Grigorian, Sergey
  • 通讯作者:
    Grigorian, Sergey
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sergey Grigorian其他文献

Estimates and monotonicity for a heat flow of isometric $$G_{2}$$ -structures
Algebraic structures on parallelizable manifolds
可并行流形上的代数结构
  • DOI:
    10.1016/j.jalgebra.2024.06.001
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0.9
  • 作者:
    Sergey Grigorian
  • 通讯作者:
    Sergey Grigorian
Betti Numbers of a Class of Barely G 2 Manifolds

Sergey Grigorian的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Computing Lagrangian means in multi-timescale fluid flows
计算多时间尺度流体流动中的拉格朗日均值
  • 批准号:
    EP/Y021479/1
  • 财政年份:
    2024
  • 资助金额:
    $ 20.12万
  • 项目类别:
    Research Grant
MHDSSP: Self-sustaining processes and edge states in magnetohydrodynamic flows subject to rotation and shear
MHDSSP:受到旋转和剪切作用的磁流体动力流中的自持过程和边缘状态
  • 批准号:
    EP/Y029194/1
  • 财政年份:
    2024
  • 资助金额:
    $ 20.12万
  • 项目类别:
    Fellowship
Collaborative Research: GEM--Multi-scale Magnetosphere-Ionosphere-Thermosphere Coupling Dynamics Driven by Bursty Bulk Flows
合作研究:GEM——突发体流驱动的多尺度磁层-电离层-热层耦合动力学
  • 批准号:
    2349872
  • 财政年份:
    2024
  • 资助金额:
    $ 20.12万
  • 项目类别:
    Standard Grant
Mesh-free methods for turbulent reacting flows: the next generation of DNS
用于湍流反应流的无网格方法:下一代 DNS
  • 批准号:
    EP/W005247/2
  • 财政年份:
    2024
  • 资助金额:
    $ 20.12万
  • 项目类别:
    Research Grant
SUPERSLUG: Deconstructing sediment superslugs as a legacy of extreme flows
SUPERSLUG:解构沉积物超级段塞作为极端流动的遗产
  • 批准号:
    NE/Z00022X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 20.12万
  • 项目类别:
    Research Grant
Conference: Geometric Flows and Relativity
会议:几何流和相对论
  • 批准号:
    2348273
  • 财政年份:
    2024
  • 资助金额:
    $ 20.12万
  • 项目类别:
    Standard Grant
Conference: St. Louis Topology Conference: Flows and Foliations in 3-Manifolds
会议:圣路易斯拓扑会议:3 流形中的流动和叶理
  • 批准号:
    2350309
  • 财政年份:
    2024
  • 资助金额:
    $ 20.12万
  • 项目类别:
    Standard Grant
CAREER: Turbulence-Resolving Integral Simulations for Boundary Layer Flows
职业:边界层流的湍流求解积分模拟
  • 批准号:
    2340121
  • 财政年份:
    2024
  • 资助金额:
    $ 20.12万
  • 项目类别:
    Continuing Grant
A reliable approach for the characterization of biologically-relevant cardiovascular flows
表征生物学相关心血管血流的可靠方法
  • 批准号:
    2908744
  • 财政年份:
    2024
  • 资助金额:
    $ 20.12万
  • 项目类别:
    Studentship
ERI: Experimental Investigation of Compressibility Effects on Turbulent Kinetic Energy Production in Supersonic Flows
ERI:压缩性对超音速流中湍动能产生的影响的实验研究
  • 批准号:
    2347416
  • 财政年份:
    2024
  • 资助金额:
    $ 20.12万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了