Leveraging Covariate and Structural Information for Efficient Large-Scale and High-Dimensional Inference
利用协变量和结构信息进行高效的大规模和高维推理
基本信息
- 批准号:1811747
- 负责人:
- 金额:$ 15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-01 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The proliferation of big data is accompanied by a vast number of questions, in the form of hypothesis tests, which call for effective methods to conduct large-scale and high-dimensional inferences. These influential methods must involve statistical analysis on many study units simultaneously. Conventional simultaneous inference procedures often assume that hypotheses for different units are exchangeable. However, in many scientific applications, external covariate and structural information regarding the patterns of signals are available. Exploiting such side information efficiently and accurately will lead to improved statistical power, as well as enhanced interpretability of research results. The main thrust of this research is to advance statistical methodologies and theories for large-scale and high-dimensional inference with a particular focus on integrating potentially useful external covariate and structural information into inferential procedures. This research aims to develop innovative methodologies and theories to address several significant problems in large-scale and high-dimensional inference. In Project 1, the PI will introduce a new multiple testing procedure that can automatically select relevant covariates to improve the efficiency in inference when a large number of external covariates are available. In Project 2, the PI will develop a new multiple testing framework, which can integrate various forms of structural information. Because prior information is seldom perfectly accurate, a particular focus will be on developing procedures that are robust to misspecified/imperfect prior information. In Project 3, the PI shall propose new procedures for simultaneous inference in high-dimensional regressions with side information. The statistical tools will be used to identify skilled fund managers, assess the performance of climate field reconstructions, and analyze genomic data in an integrative way. Methods and computer code developed will be made publicly available.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
大数据的扩散伴随着大量的问题,这些问题以假设检验的形式出现,需要有效的方法来进行大规模、高维的推论。这些有影响的方法必须同时涉及多个研究单位的统计分析。传统的同时推理程序通常假设不同单位的假设是可以交换的。然而,在许多科学应用中,有关信号模式的外部协变量和结构信息是可用的。有效和准确地利用这些侧面信息将提高统计能力,并增强研究结果的可解释性。本研究的主旨是推进大规模和高维推理的统计方法和理论,特别侧重于将潜在有用的外部协变量和结构信息整合到推理过程中。本研究旨在发展创新的方法和理论,以解决大规模和高维推理中的几个重大问题。在Project 1中,PI将引入一种新的多重测试程序,该程序可以在大量外部协变量可用时自动选择相关协变量,以提高推理效率。在项目2中,PI将开发一个新的多重测试框架,该框架可以集成各种形式的结构信息。由于先验信息很少是完全准确的,因此将特别关注开发对错误指定/不完美先验信息具有鲁棒性的程序。在项目3中,PI将提出在具有侧信息的高维回归中同时推理的新程序。统计工具将用于识别熟练的基金经理,评估气候场重建的表现,并以综合的方式分析基因组数据。开发的方法和计算机代码将向公众提供。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Covariate adaptive familywise error rate control for genome-wide association studies
用于全基因组关联研究的协变量自适应家族错误率控制
- DOI:10.1093/biomet/asaa098
- 发表时间:2020
- 期刊:
- 影响因子:2.7
- 作者:Zhou, Huijuan;Zhang, Xianyang;Chen, Jun
- 通讯作者:Chen, Jun
Covariate Adaptive False Discovery Rate Control With Applications to Omics-Wide Multiple Testing
- DOI:10.1080/01621459.2020.1783273
- 发表时间:2019-09
- 期刊:
- 影响因子:3.7
- 作者:Xianyang Zhang;Jun Chen
- 通讯作者:Xianyang Zhang;Jun Chen
Projection-based Inference for High-dimensional Linear Models
- DOI:10.5705/ss.202019.0283
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:S. Yi;Xianyang Zhang
- 通讯作者:S. Yi;Xianyang Zhang
Detection of Local Differences in Spatial Characteristics Between Two Spatiotemporal Random Fields
两个时空随机场之间空间特征的局部差异检测
- DOI:10.1080/01621459.2020.1775613
- 发表时间:2021
- 期刊:
- 影响因子:3.7
- 作者:Yun, Sooin;Zhang, Xianyang;Li, Bo
- 通讯作者:Li, Bo
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xianyang Zhang其他文献
Structure Adaptive Lasso
结构自适应套索
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Sandipan Pramanik;Xianyang Zhang - 通讯作者:
Xianyang Zhang
Empirical Bayes, SURE and Sparse Normal Mean Models
经验贝叶斯、SURE 和稀疏正态均值模型
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Xianyang Zhang;A. Bhattacharya - 通讯作者:
A. Bhattacharya
Package ‘MicrobiomeStat’
软件包“MicrobiomeStat”
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Xianyang Zhang;Jun Chen;Huijuan Zhou;Maintainer - 通讯作者:
Maintainer
Involvement of the in fl ammasome in abnormal semen quality of men with spinal cord injury
炎症小体与脊髓损伤男性精液质量异常的关系
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Xianyang Zhang;E. Ibrahim;J. Vaccari;G. Lotocki;T. Aballa;W. Dietrich;R. Keane;C. Lynne;N. Brackett - 通讯作者:
N. Brackett
Cell-based Therapy for Treatment of Diabetes Mellitus: Can the Agonists of Growth Hormone-releasing Hormone Make a Contribution?
- DOI:
10.23937/2469-570x/1410023 - 发表时间:
2016-06 - 期刊:
- 影响因子:0
- 作者:
Xianyang Zhang - 通讯作者:
Xianyang Zhang
Xianyang Zhang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xianyang Zhang', 18)}}的其他基金
Collaborative Research: New Statistical Methods for Microbiome Data Analysis
合作研究:微生物组数据分析的新统计方法
- 批准号:
2113359 - 财政年份:2021
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
ATD: Collaborative Research: Predicting the Threat of Vector-Borne Illnesses Using Spatiotemporal Weather Patterns
ATD:合作研究:利用时空天气模式预测媒介传播疾病的威胁
- 批准号:
1830392 - 财政年份:2018
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Collaborative Research: Statistical Inference for Functional and High Dimensional Data with New Dependence Metrics
协作研究:使用新的依赖性度量对功能和高维数据进行统计推断
- 批准号:
1607320 - 财政年份:2016
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
相似海外基金
Covariate-adjusted Expected Shortfall under Data Heterogeneity
数据异质性下的协变量调整预期缺口
- 批准号:
2310464 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Covariate-adjusted Expected Shortfall under Data Heterogeneity
数据异质性下的协变量调整预期缺口
- 批准号:
2345035 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Non-parametric estimation under covariate shift: From fundamental bounds to efficient algorithms
协变量平移下的非参数估计:从基本界限到高效算法
- 批准号:
2311072 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Covariate adjustment in cluster randomised trials with binar y outcomes focussing on relative risks and risk difference
整群随机试验中的协变量调整,二元结果侧重于相对风险和风险差异
- 批准号:
2893574 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Studentship
Statistical Methods and Theory for Predictive Biomarker Study in Clinical Trials via Modeling and Analysis of Covariate Interactions
通过协变量相互作用建模和分析进行临床试验中预测生物标志物研究的统计方法和理论
- 批准号:
RGPIN-2018-04462 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
Discovery Grants Program - Individual
Covariate Information for Dynamic Network Embedding
动态网络嵌入的协变量信息
- 批准号:
2741521 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
Studentship
Collaborative Research: Covariate-Driven Approaches to Network Estimation
协作研究:协变量驱动的网络估计方法
- 批准号:
2113602 - 财政年份:2021
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Mathematical modeling with imperfect/incomplete covariate information
具有不完美/不完整协变量信息的数学建模
- 批准号:
563503-2021 - 财政年份:2021
- 资助金额:
$ 15万 - 项目类别:
University Undergraduate Student Research Awards
Statistical Methods and Theory for Predictive Biomarker Study in Clinical Trials via Modeling and Analysis of Covariate Interactions
通过协变量相互作用建模和分析进行临床试验中预测生物标志物研究的统计方法和理论
- 批准号:
RGPIN-2018-04462 - 财政年份:2021
- 资助金额:
$ 15万 - 项目类别:
Discovery Grants Program - Individual
Mathematical modeling with imperfect/incomplete covariate information
具有不完美/不完整协变量信息的数学建模
- 批准号:
563603-2021 - 财政年份:2021
- 资助金额:
$ 15万 - 项目类别:
University Undergraduate Student Research Awards