Covariate-adjusted Expected Shortfall under Data Heterogeneity
数据异质性下的协变量调整预期缺口
基本信息
- 批准号:2310464
- 负责人:
- 金额:$ 33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2023-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The expected shortfall of a random variable is the tail average below or above a given threshold specified by a quantile, and it becomes a natural and useful summary statistic when low- or high-valued outcomes are of primary interest, as is often the case in risk assessment and treatment effect detection. Given the emerging importance of the expected shortfall as a summary measure, the recent literature in financial econometrics, statistics and operations research has focused on the expected shortfall regression, which enables one to evaluate the tail differences after adjusting for the covariates or possible confounding factors. The project will study the estimation of covariate-adjusted expected shortfall, identify new approaches for estimation, and study the statistical properties for its adaptation to data heterogeneity. The proposed research will provide toolkit for data-driven and evidence-based analysis in diverse fields, including concussion research, health disparity research, and climate studies. The project will also contribute to the training of a new generation of statisticians and data scientists.The project will develop a new approach to estimation of covariate-adjusted expected shortfall that is computationally feasible and flexible, adapts well to data heterogeneity, and allows effective statistical inference. The proposed approach is built on a characterization of the expected shortfall based on a quantile loss function, but without reliance on the quantile function itself. When the expected shortfall function takes a parametric form, the proposed approach will start with an initial estimator of the expected shortfall at possibly a sub-optimal rate of convergence and obtain a much better solution from convex optimization. The proposed method works under weak modeling assumptions and opens a new window of opportunities for better statistical inference for expected shortfall regression.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随机变量的预期短缺是低于或高于由分位数指定的给定阈值的尾部平均值,并且当主要关注低值或高值结局时,它成为自然和有用的汇总统计量,这在风险评估和治疗效果检测中经常出现。鉴于新兴的重要性,预期短缺作为一个总结措施,最近的文献在金融计量经济学,统计学和运筹学集中在预期短缺回归,它使人们能够评估调整协变量或可能的混杂因素后的尾部差异。该项目将研究协变量调整后的预期短缺的估计,确定新的估计方法,并研究其适应数据异质性的统计特性。拟议的研究将为不同领域的数据驱动和循证分析提供工具包,包括脑震荡研究,健康差异研究和气候研究。该项目还将有助于培训新一代的统计人员和数据科学家,并将开发一种估计经协变量调整后的预期短缺的新方法,这种方法在计算上是可行和灵活的,能很好地适应数据的异质性,并能进行有效的统计推断。所提出的方法是建立在一个分位数损失函数的基础上的预期短缺的表征,但不依赖于分位数函数本身。当期望的短缺函数采用参数形式时,所提出的方法将以可能的次优收敛速率从期望的短缺的初始估计开始,并且从凸优化获得更好的解决方案。所提出的方法在弱建模假设下工作,并打开了一个新的机会窗口,更好的统计推断预期的短缺regression. This奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xuming He其他文献
PENALIZED LIKELIHOOD FOR LOGISTIC-NORMAL MIXTURE MODELS WITH UNEQUAL VARIANCES
- DOI:
doi: https://doi.org/10.5705/ss.202015.0371 - 发表时间:
2017 - 期刊:
- 影响因子:
- 作者:
Juan Shen;Yingchuan Wang;Xuming He - 通讯作者:
Xuming He
Optical ReLU-like activation function based on a semiconductor laser with optical injection.
基于光注入半导体激光器的类光学 ReLU 激活函数。
- DOI:
10.1364/ol.511113 - 发表时间:
2023 - 期刊:
- 影响因子:3.6
- 作者:
Guanting Liu;Yiwei Shen;Ruiqian Li;Jingyi Yu;Xuming He;Chengyuan Wang - 通讯作者:
Chengyuan Wang
Semi-Supervised Domain-Adaptive Pulmonary Artery Segmentation via Uncertainty Guidance and Shape Strengthening
通过不确定性指导和形状强化进行半监督域自适应肺动脉分割
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Jiyuan Liu;Xiao Zhang;Dongdong Gu;O. Xi;Jiadong Zhang;Xuming He;Dinggang Shen;Zhong Xue - 通讯作者:
Zhong Xue
LAW OF THE ITERATED LOGARITHM AND INVARIANCE PRINCIPLE FOR M-ESTIMATORS
M-估计量的迭代对数定律和不变性原理
- DOI:
10.1090/s0002-9939-1995-1231036-7 - 发表时间:
1995 - 期刊:
- 影响因子:0
- 作者:
Xuming He;G. Wang - 通讯作者:
G. Wang
On marginal estimation in a semiparametric model for longitudinal data with time-independent covariates
具有时间无关协变量的纵向数据半参数模型中的边际估计
- DOI:
- 发表时间:
2002 - 期刊:
- 影响因子:0
- 作者:
Xuming He;Mi - 通讯作者:
Mi
Xuming He的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xuming He', 18)}}的其他基金
Conference: Workshop on Translational Research on Data Heterogeneity
会议:数据异构性转化研究研讨会
- 批准号:
2406154 - 财政年份:2024
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Covariate-adjusted Expected Shortfall under Data Heterogeneity
数据异质性下的协变量调整预期缺口
- 批准号:
2345035 - 财政年份:2023
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Towards Efficient Bias Correction in Data Snooping
实现数据窥探中的有效偏差校正
- 批准号:
1914496 - 财政年份:2019
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Statistics at a Crossroads: Challenges and Opportunities in the Data Science Era
十字路口的统计学:数据科学时代的挑战与机遇
- 批准号:
1840278 - 财政年份:2018
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
New algorithms for consistent model selection beyond linear models
用于超越线性模型的一致模型选择的新算法
- 批准号:
1607840 - 财政年份:2016
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant
New Directions in Quantile-based Modeling and Analysis
基于分位数的建模和分析的新方向
- 批准号:
1307566 - 财政年份:2013
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Efficient Modeling in Quantile Regression
分位数回归的高效建模
- 批准号:
1237234 - 财政年份:2011
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant
Efficient Modeling in Quantile Regression
分位数回归的高效建模
- 批准号:
1007396 - 财政年份:2010
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant
A Virtual Center to Promote Collaboration between US- and China-based Researchers in Statistical Science
促进中美统计科学研究人员合作的虚拟中心
- 批准号:
0630950 - 财政年份:2006
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Inferential Methods for Quantile Regression
分位数回归的推理方法
- 批准号:
0604229 - 财政年份:2006
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant
相似海外基金
The role of alcohol-associated microbiota membrane vesicles in mucosal immunity
酒精相关微生物膜囊泡在粘膜免疫中的作用
- 批准号:
10751767 - 财政年份:2023
- 资助金额:
$ 33万 - 项目类别:
2/2 Multi-Center CLEAN AIR 2 Randomized Control Trial in COPD
2/2 慢性阻塞性肺病多中心 CLEAN AIR 2 随机对照试验
- 批准号:
10722232 - 财政年份:2023
- 资助金额:
$ 33万 - 项目类别:
Measuring the Impact of the Value Flower and Unobserved Heterogeneity on the Cost Effectiveness and Use of Novel Treatments for Alzheimer's Disease and Related Dementias
衡量价值花和未观察到的异质性对阿尔茨海默病和相关痴呆症新疗法的成本效益和使用的影响
- 批准号:
10658457 - 财政年份:2023
- 资助金额:
$ 33万 - 项目类别:
Assessing the Clinical and Cost-Effectiveness of a Virtual PEth-based Contingency Management for Adults with AUD
评估针对成人 AUD 的基于虚拟 PEth 的应急管理的临床和成本效益
- 批准号:
10717985 - 财政年份:2023
- 资助金额:
$ 33万 - 项目类别:
Optimizing Telehealth-delivery of a Weight Loss Intervention in Older Adults with Multiple Chronic Conditions: A Sequential, Multiple Assignment, Randomized Trial
优化对患有多种慢性病的老年人进行远程医疗的减肥干预:一项序贯、多项分配、随机试验
- 批准号:
10583917 - 财政年份:2023
- 资助金额:
$ 33万 - 项目类别:
Developmental Programming of the Liver and Kidney in Fetal Growth with or without Gene Therapy
有或没有基因治疗的胎儿生长中肝脏和肾脏的发育规划
- 批准号:
10663585 - 财政年份:2023
- 资助金额:
$ 33万 - 项目类别:
Mrgprb2 mediated neuroinflammation after cerebral ischemia
Mrgprb2介导脑缺血后的神经炎症
- 批准号:
10644182 - 财政年份:2023
- 资助金额:
$ 33万 - 项目类别:
Structured Peer-delivered ART and Reentry Community Strategy (SPARCS) to overcome barriers to HIV care continuity during community reentry from incarceration in South Africa
结构化的同伴提供的 ART 和重返社区策略 (SPARCS),以克服南非监狱出狱重返社区期间艾滋病毒护理连续性的障碍
- 批准号:
10700511 - 财政年份:2023
- 资助金额:
$ 33万 - 项目类别:
Optimizing Patient-Centered Opioid Tapering with Mindfulness-Oriented Recovery Enhancement
通过以正念为导向的恢复增强来优化以患者为中心的阿片类药物逐渐减少
- 批准号:
10715903 - 财政年份:2023
- 资助金额:
$ 33万 - 项目类别: