New Approaches for Censored Quantile Regression Models via Data Augmentation
通过数据增强的截尾分位数回归模型的新方法
基本信息
- 批准号:1811768
- 负责人:
- 金额:$ 15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-05-15 至 2022-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
With the availability of massive amounts of data in the modern Big Data era, heterogeneous behavior is a common phenomenon. It is an important challenge to develop statistical methods for extracting useful insights from datasets exhibiting heterogeneity, without making strong modeling assumptions that could restrict the applicability of these methods. One efficient way of doing this is to model the quantiles of an outcome variable conditional on covariates, a method referred to as quantile regression. The current project develops novel statistical methods and computational techniques for quantile regression models when some of the observations are only partially observed. The proposed research will enable the use of the rich class of quantile regression models for a large class of applications that were previously not amenable to these techniques. The proposed framework will include the high-dimensional setting where the number of covariates could potentially exceed the number of observations, a common occurrence in many biological, medical, and economics applications. The research will be broadly disseminated in scientific journals, at conferences and seminars, and software packages in R will be developed. As the proposed research is placed at the intersection of modern statistical methodology, computation, and theory with substantial applications, it will be suitable for training graduate students with a broad range of skills. The proposed research will develop novel and efficient statistical methods for quantile regression models when the responses are subject to arbitrary censoring, that is, multiple censoring types including single, double and interval censoring can occur within the same dataset, and the covariates can be high-dimensional. Three fundamental problems in censored quantile modeling will be considered in this project: (i) develop efficient inferential methods under arbitrary censoring and study their theoretical properties, (ii) devise computationally scalable algorithms having statistically desirable properties that can handle high-dimensional covariates, and (iii) develop models that account for subgroups having heterogeneous quantile effects. A fundamental challenge that will be tackled is how data augmentation and the Bayesian framework can be efficiently utilized when an explicit likelihood is unavailable. An important feature of the methods is their computational scalability while having desirable statistical properties.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随着现代大数据时代海量数据的可获得性,异构性行为是一种普遍现象。一个重要的挑战是开发统计方法,以便从表现出异质性的数据集中提取有用的见解,而不做出可能限制这些方法适用性的强有力的建模假设。要做到这一点,一种有效的方法是根据协变量对结果变量的分位数进行建模,这种方法称为分位数回归。目前的项目为分位数回归模型开发了新的统计方法和计算技术,当一些观测只被部分观察到时。拟议的研究将使丰富的分位数回归模型能够用于以前不适用于这些技术的大类应用。建议的框架将包括高维设置,其中协变量的数量可能会超过观察的数量,这在许多生物学、医学和经济学应用中都是常见的。这项研究将在科学期刊、会议和研讨会上广泛传播,并将开发R的软件包。由于拟议的研究处于现代统计方法、计算和理论的交汇点,具有实质性的应用,因此它将适合培养具有广泛技能的研究生。该研究将为分位数回归模型在任意截尾情况下的统计方法提供新的、有效的方法,即在同一数据集中可以出现包括单截尾、双截尾和区间截尾在内的多种截尾类型,并且协变量可以是高维的。本项目将考虑删失分位数建模中的三个基本问题:(I)开发任意删减下的有效推理方法,并研究其理论性质;(Ii)设计具有统计期望性质的可计算可扩展的算法,其能够处理高维协变量;以及(Iii)开发解释具有不同分位数效应的子组的模型。将解决的一个根本挑战是,当无法获得明确的可能性时,如何有效地利用数据增强和贝叶斯框架。这些方法的一个重要特征是它们的计算可扩展性,同时具有理想的统计特性。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Evaluating Proxy Influence in Assimilated Paleoclimate Reconstructions—Testing the Exchangeability of Two Ensembles of Spatial Processes
评估同化古气候重建中的代理影响——测试两个空间过程系综的可交换性
- DOI:10.1080/01621459.2020.1799810
- 发表时间:2020
- 期刊:
- 影响因子:3.7
- 作者:Harris, T.
- 通讯作者:Harris, T.
GemBag: Group Estimation of Multiple Bayesian Graphical Models
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Xinming Yang;Lingrui Gan;N. Narisetty;Feng Liang
- 通讯作者:Xinming Yang;Lingrui Gan;N. Narisetty;Feng Liang
Consistent Group Selection with Bayesian High Dimensional Modeling
- DOI:10.1214/19-ba1178
- 发表时间:2020-09
- 期刊:
- 影响因子:4.4
- 作者:Xinming Yang;N. Narisetty
- 通讯作者:Xinming Yang;N. Narisetty
Bayesian Regularization for Graphical Models With Unequal Shrinkage
- DOI:10.1080/01621459.2018.1482755
- 发表时间:2019-07-03
- 期刊:
- 影响因子:3.7
- 作者:Gan, Lingrui;Narisetty, Naveen N.;Liang, Feng
- 通讯作者:Liang, Feng
BAYESIAN ESTIMATION OF GAUSSIAN CONDITIONAL RANDOM FIELDS
高斯条件随机场的贝叶斯估计
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:1.4
- 作者:Lingrui Gan, Naveen N.
- 通讯作者:Lingrui Gan, Naveen N.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Naveen Naidu Narisetty其他文献
Naveen Naidu Narisetty的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Naveen Naidu Narisetty', 18)}}的其他基金
CAREER: Flexible and Efficient Exploration of the Bayesian Framework for High Dimensional Modeling
职业:高维建模贝叶斯框架的灵活高效探索
- 批准号:
1943500 - 财政年份:2020
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
相似国自然基金
Lagrangian origin of geometric approaches to scattering amplitudes
- 批准号:24ZR1450600
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Investigating bioengineering approaches to produce immuno-modulatory mesenchymal stromal cells and their extracellular vesicle
研究生产免疫调节间充质基质细胞及其细胞外囊泡的生物工程方法
- 批准号:
2608627 - 财政年份:2025
- 资助金额:
$ 15万 - 项目类别:
Studentship
New approaches to training deep probabilistic models
训练深度概率模型的新方法
- 批准号:
2613115 - 财政年份:2025
- 资助金额:
$ 15万 - 项目类别:
Studentship
Collaborative Research: BoCP-Implementation: Alpine plants as a model system for biodiversity dynamics in a warming world: Integrating genetic, functional, and community approaches
合作研究:BoCP-实施:高山植物作为变暖世界中生物多样性动态的模型系统:整合遗传、功能和社区方法
- 批准号:
2326020 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Collaborative Research: BoCP-Implementation: Alpine plants as a model system for biodiversity dynamics in a warming world: Integrating genetic, functional, and community approaches
合作研究:BoCP-实施:高山植物作为变暖世界中生物多样性动态的模型系统:整合遗传、功能和社区方法
- 批准号:
2326021 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Multiscale Approaches And Scalability Within Climate Change-heritage Risk Assessments
气候变化遗产风险评估中的多尺度方法和可扩展性
- 批准号:
AH/Z000084/1 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Research Grant
Dynamical Approaches to Number Theory and Additive Combinatorics
数论和加法组合学的动态方法
- 批准号:
EP/Y014030/1 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Research Grant
C-NEWTRAL: smart CompreheNsive training to mainstrEam neW approaches for climaTe-neutRal cities through citizen engAgement and decision-making support
C-NEWTRAL:智能综合培训,通过公民参与和决策支持将气候中和城市的新方法纳入主流
- 批准号:
EP/Y032640/1 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Research Grant
NEM-EMERGE: An integrated set of novel approaches to counter the emergence and proliferation of invasive and virulent soil-borne nematodes
NEM-EMERGE:一套综合的新方法来对抗入侵性和剧毒土传线虫的出现和扩散
- 批准号:
10080598 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
EU-Funded
PINK - Provision of Integrated Computational Approaches for Addressing New Markets Goals for the Introduction of Safe-and-Sustainable-by-Design Chemicals and Materials
PINK - 提供综合计算方法来解决引入安全和可持续设计化学品和材料的新市场目标
- 批准号:
10097944 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
EU-Funded
Stuck in the mud: addressing the fine sediment conundrum with multiscale and interdisciplinary approaches to support global freshwater biodiversity
陷入困境:采用多尺度和跨学科方法解决细小沉积物难题,支持全球淡水生物多样性
- 批准号:
MR/Y020200/1 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Fellowship