Collaborative Research: New Developments in Direct Probabilistic Inference on Interest Parameters
合作研究:兴趣参数直接概率推理的新进展
基本信息
- 批准号:1811936
- 负责人:
- 金额:$ 10万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-01 至 2021-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The Bayesian approach to statistical learning relies on probabilistic models for all observables and unknowns. The need to model all aspects of the problem can restrict the scope of applications and, more generally, can be a burden to the data analyst who is often only interested in certain features of the unknowns. This project will develop a mathematically rigorous and computationally efficient framework in which Bayesian learning can be carried out directly in terms of only the features of interest. This reduces the modeling and computational burden on the data analyst and provides new insights about Bayesian learning more generallyA Bayesian approach is a powerful and rigorous framework for statistical learning. The downside is that it requires a full model for the observables as well as all unknown quantities, the specification of which can be a burden on the data analyst. In addition to the familiar challenges of prior specification, there are also risks of misspecification biases. A more subtle complication is due to selection effects that result from considering several candidate models. The data analyst's burden is further exaggerated in situations where only a feature of the unknowns is of interest, i.e., when there is an interest parameter and a (potentially high-dimensional) nuisance parameter and inference is required only for the former. That is, the Bayesian approach still requires that the data analyst make non-trivial efforts to specify prior distributions and carry out posterior computations relevant only to the nuisance parameter, which can be viewed as a waste. Yet having access to a posterior distribution for inference on the interest parameter is still a desirable feature, and the proposed research aims to develop a new framework for posterior inference directly on interest parameters. These direct posteriors (DiPs) effectively target the interest parameter, giving data analysts an opportunity to avoid the seemingly wasteful modeling and computation efforts involving nuisance parameters. This project will construct DiPs for finite- and infinite-dimensional interest parameters with rigorous theoretical guarantees, and will also develop efficient computational tools to facilitate DiP-based inference.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
统计学习的贝叶斯方法依赖于所有可观察和未知的概率模型。对问题的所有方面进行建模的需要可能会限制应用程序的范围,更一般地说,这可能会成为数据分析师的负担,因为他们通常只对未知的某些特征感兴趣。该项目将开发一个数学上严谨且计算效率高的框架,在该框架中,贝叶斯学习可以仅根据感兴趣的特征直接进行。这减少了数据分析师的建模和计算负担,并提供了关于贝叶斯学习的新见解。贝叶斯方法是一个强大而严格的统计学习框架。缺点是它需要一个完整的可观察量和所有未知量的模型,其规范可能是数据分析师的负担。除了熟悉的先前规范的挑战之外,还有规范错误偏差的风险。一个更微妙的复杂性是由于考虑几个候选模型而产生的选择效应。在只有一个未知特征是感兴趣的情况下,数据分析师的负担进一步加重,即,当存在感兴趣参数和(可能是高维的)干扰参数时,只需要对前者进行推理。也就是说,贝叶斯方法仍然要求数据分析人员付出巨大的努力来指定先验分布,并只进行与干扰参数相关的后验计算,这可以被视为一种浪费。然而,获得对兴趣参数进行后验推理的后验分布仍然是一个理想的特征,本研究旨在开发一个直接对兴趣参数进行后验推理的新框架。这些直接后验(dip)有效地针对感兴趣的参数,使数据分析人员有机会避免涉及有害参数的看似浪费的建模和计算工作。该项目将构建具有严格理论保证的有限维和无限维兴趣参数的dip,并将开发高效的计算工具来促进基于dip的推理。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Bayesian inference on volatility in the presence of infinite jump activity and microstructure noise
- DOI:10.1214/20-ejs1794
- 发表时间:2019-09
- 期刊:
- 影响因子:0
- 作者:Qi Wang;J. E. Figueroa-L'opez;Todd A. Kuffner
- 通讯作者:Qi Wang;J. E. Figueroa-L'opez;Todd A. Kuffner
On the validity of the formal Edgeworth expansion for posterior densities
关于后验密度的形式 Edgeworth 展开的有效性
- DOI:10.1214/19-aos1871
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Kolassa, John E.;Kuffner, Todd A.
- 通讯作者:Kuffner, Todd A.
Block bootstrap optimality and empirical block selection for sample quantiles with dependent data
具有相关数据的样本分位数的块引导最优性和经验块选择
- DOI:10.1093/biomet/asaa075
- 发表时间:2020
- 期刊:
- 影响因子:2.7
- 作者:Kuffner, T A;Lee, S M;Young, G A
- 通讯作者:Young, G A
Post-Selection Inference
- DOI:10.1146/annurev-statistics-100421-044639
- 发表时间:2022-01-01
- 期刊:
- 影响因子:7.9
- 作者:Kuchibhotla,Arun K.;Kolassa,John E.;Kuffner,Todd A.
- 通讯作者:Kuffner,Todd A.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Todd Kuffner其他文献
Todd Kuffner的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Todd Kuffner', 18)}}的其他基金
Fifth Workshop on Higher-Order Asymptotics and Post-Selection Inference; June 21-23, 2020; St. Louis, Missouri
第五届高阶渐近学和后选择推理研讨会;
- 批准号:
1954046 - 财政年份:2020
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Third Workshop on Higher-Order Asymptotics and Post-Selection Inference
第三次高阶渐近学和后选择推理研讨会
- 批准号:
1812088 - 财政年份:2018
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: Higher-Order Asymptotics and Accurate Inference for Post-Selection
合作研究:高阶渐进和后选择的精确推理
- 批准号:
1712940 - 财政年份:2017
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Higher-Order Asymptotics and Post-Selection Inference
高阶渐进和选择后推理
- 批准号:
1623028 - 财政年份:2016
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
- 批准号:
2348998 - 财政年份:2025
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
- 批准号:
2348999 - 财政年份:2025
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: New to IUSE: EDU DCL:Diversifying Economics Education through Plug and Play Video Modules with Diverse Role Models, Relevant Research, and Active Learning
协作研究:IUSE 新增功能:EDU DCL:通过具有不同角色模型、相关研究和主动学习的即插即用视频模块实现经济学教育多元化
- 批准号:
2315700 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: Resolving the LGM ventilation age conundrum: New radiocarbon records from high sedimentation rate sites in the deep western Pacific
合作研究:解决LGM通风年龄难题:西太平洋深部高沉降率地点的新放射性碳记录
- 批准号:
2341426 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
Collaborative Research: Resolving the LGM ventilation age conundrum: New radiocarbon records from high sedimentation rate sites in the deep western Pacific
合作研究:解决LGM通风年龄难题:西太平洋深部高沉降率地点的新放射性碳记录
- 批准号:
2341424 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
Collaborative Research: On New Directions for the Derivation of Wave Kinetic Equations
合作研究:波动力学方程推导的新方向
- 批准号:
2306378 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: New Directions in Algorithmic Replicability
合作研究:AF:小:算法可复制性的新方向
- 批准号:
2342244 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: New to IUSE: EDU DCL:Diversifying Economics Education through Plug and Play Video Modules with Diverse Role Models, Relevant Research, and Active Learning
协作研究:IUSE 新增功能:EDU DCL:通过具有不同角色模型、相关研究和主动学习的即插即用视频模块实现经济学教育多元化
- 批准号:
2315699 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: Understanding New Labor Relations for the 21st Century
合作研究:理解21世纪的新型劳动关系
- 批准号:
2346230 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: New Regression Models and Methods for Studying Multiple Categorical Responses
合作研究:研究多重分类响应的新回归模型和方法
- 批准号:
2415067 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant