Thin film batteries based on electrical-induced interface reactions
基于电致界面反应的薄膜电池
基本信息
- 批准号:233575965
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2013
- 资助国家:德国
- 起止时间:2012-12-31 至 2015-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A new class of lithium ion thin film batteries will be studied, which exhibits a novel, self-forming reaction layer instead of conventional electrodes. The batteries will be prepared by reactive ion-beam sputtering, using an ultra-thin layer of the well-known network glass LIPON (Lithium Phosphorous Oxynitride) as a solid electrolyte. For deposition of the electrodes a novel, alternative concept will be applied: At the interface between LIPON and a conventional metal, an electrochemical-active interface phase is formed by solid state reaction. This phase serves as an active material on the cathode side, so the deposition of a conventional intercalation cathode is not necessary any more.Currently, the growth process and the properties of this interface phase are only poorly investigated. Nevertheless, recent results of literature and of own work show that it exhibits novel electrochemical properties and that it may help to increase the energy density and the cycle stability of the thin film batteries. Therefore, in a first step of the project, the growth process and the properties of this electrochemical-active phase shall be studied from a fundamental point of view, in case of the model system Pt-LIPON-Ag. It shall be investigated which interface reactions occur and in which way these reactions influence the storage capacity and the cycle stability of the batteries. For this purpose, transmission electron microscopy, cyclic voltammetry, and impedance spectroscopy will be used to investigate the interface reactions in detail. Based on these fundamental studies, a concept shall be developed, to improve the energy density and the cycle stability of the new thin film batteries. For this purpose, new materials will be tested. On the side of the cathode, the use of e.g. Fe, Co, Mg, or V is planed, which may result in an increased energy density. Instead, on the side of the anode, a thin layer of lithium titanium oxide will be used, which may enhance the cycle stability of the batteries.
一种新型的锂离子薄膜电池将被研究,它显示出一种新颖的,自形成的反应层,而不是传统的电极。电池将通过反应离子束溅射法制备,使用一层超薄的众所周知的网络玻璃立磷酸盐(Lithium Pylous OxyNide)作为固体电解液。对于电极的沉积,将采用一种新的、另一种概念:在LiPon与传统金属的界面上,通过固相反应形成电化学活性界面相。该相作为阴极侧的活性物质,因此不再需要传统的插层阴极沉积。目前,对这种界面相的生长过程和性质的研究还很少。然而,最近的文献和自己的工作结果表明,它具有新颖的电化学性质,有助于提高薄膜电池的能量密度和循环稳定性。因此,在项目的第一步,应该从基本的角度研究这种电化学活性相的生长过程和性质,在模型体系为铂-立邦-银的情况下。应调查发生哪些界面反应以及这些反应以何种方式影响电池的存储容量和循环稳定性。为此,将使用透射电子显微镜、循环伏安法和阻抗谱来详细研究界面反应。在这些基础研究的基础上,提出了提高新型薄膜电池的能量密度和循环稳定性的概念。为此,将对新材料进行测试。在阴极一侧,计划使用例如铁、钴、镁或钒,这可能导致能量密度增加。相反,在负极一侧将使用一层薄薄的锂钛氧化物,这可能会增强电池的循环稳定性。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Enhancing Silicon Performance via LiPON Coating: A Prospective Anode for Lithium Ion Batteries
- DOI:10.1016/j.electacta.2016.09.040
- 发表时间:2016-11
- 期刊:
- 影响因子:6.6
- 作者:Yaser Hamedi Jouybari;F. Berkemeier
- 通讯作者:Yaser Hamedi Jouybari;F. Berkemeier
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dr. Frank Berkemeier其他文献
Dr. Frank Berkemeier的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Kinetic Monte Carlo 模拟薄膜生长机理的研究
- 批准号:10574059
- 批准年份:2005
- 资助金额:12.0 万元
- 项目类别:面上项目
蒸汽爆炸中膜态沸腾条件下高温颗粒周围流体的热动力特性研究
- 批准号:50376036
- 批准年份:2003
- 资助金额:25.0 万元
- 项目类别:面上项目
相似海外基金
3D printing and thin film techniques for realizing next-generation lithium metal batteries
用于实现下一代锂金属电池的3D打印和薄膜技术
- 批准号:
570142-2022 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Development of all-solid-state thin-film secondary batteries and high energy density cathode materials for all-solid-state lithium secondary batteries
全固态薄膜二次电池及全固态锂二次电池高能量密度正极材料的开发
- 批准号:
21K05226 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
3D Printing and Thin Film Techniques for Next-Generation Solid-State Lithium Batteries for Electric Vehicles
用于电动汽车的下一代固态锂电池的 3D 打印和薄膜技术
- 批准号:
565485-2021 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Control of Photo-Induced Ion Diffusion Phenomena at Thin Film Interfaces and its Application to "Photochromic Batteries"
薄膜界面光致离子扩散现象的控制及其在“光致变色电池”中的应用
- 批准号:
20H02086 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Synthesis of graphite anodes for flexible all-solid-state thin-film rechargeable batteries
柔性全固态薄膜充电电池石墨负极的合成
- 批准号:
18K18844 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Development of solid-state electrolytes for thin-film lithium batteries
薄膜锂电池固态电解质的开发
- 批准号:
513576-2017 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Engage Grants Program
Solid Polymer Thin Film Electrolytes to Enable 3D Lithium Ion Batteries
固体聚合物薄膜电解质可实现 3D 锂离子电池
- 批准号:
1604471 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Standard Grant
Ion Conductivity in All-Solid-State Thin-Film Lithium Batteries
全固态薄膜锂电池中的离子电导率
- 批准号:
16H03864 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Conditioning of all solid state Lithium Ion Batteries with LiMPO4 (M=Co, Ni) thin film cathodes
使用 LiMPO4 (M=Co, Ni) 薄膜阴极调节全固态锂离子电池
- 批准号:
268156926 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Research Grants