NSF-BSF: III: Small: Collaborative Research: Databases Meet Computational Social Choice
NSF-BSF:III:小型:协作研究:数据库满足计算社会选择
基本信息
- 批准号:1813888
- 负责人:
- 金额:$ 23.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-15 至 2019-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Social choice underlies the equitable and efficient operation of a society. How does one aggregate preferences of individuals, arriving at a society-wide consensus? This question has been the subject of intense debate throughout history, dating as far back as ancient Greece, and, in the past two decades, has led to the development of computational social choice - an interdisciplinary area of research and practice that combines insights from mathematics, logic, economics, and computer science. One of the main foci of computational social choice are the algorithmic aspects of determining actual or potential winners in a poll or in an election. Moreover, dealing with incompleteness and uncertainty (an inherent characteristic of polling) is an important challenge confronted by computational social choice. In recent years, the data management community embarked on an investigation of preference databases, which extend traditional databases by treating preferences on a par with relational data. This project will bring forth a foundational and systems research agenda that will create bridges between the computational social choice and the data management communities. The main aim of this project is to develop a unifying framework that brings together preferences, rules, outcomes, contextual information, and database query languages.This project will enrich the kinds of data analysis tasks that are currently supported by computational social choice methods to include context, going beyond determining winners, and into reasoning about positions and issues that the alternatives represent, as well as information about those choosing. To this effect, this project will develop a query language that will enhance traditional database query languages with special operators for voting rules and winners, thus making it possible to study social choice problems in the context of additional information about voters, candidates, and issues. Furthermore, this language will support sophisticated queries about incomplete or uncertain preferences, rules, and winners in the relational context. Rigorous semantics of queries in this language will be provided and fundamental algorithmic problems, such as query evaluation and reasoning about constraints, will be investigated. The techniques developed in this project will be experimentally evaluated in a query engine prototype using real data sets. By establishing a technical connection between computational social choice and data management and by developing a unifying framework, the computational social choice community will have access to a plethora of methods for managing incomplete and uncertain information that were developed by the database community.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
社会选择是社会公平和有效运作的基础。一个人如何汇总个人的偏好,从而达成全社会的共识?这个问题在历史上一直是激烈辩论的主题,可以追溯到古希腊,并且在过去的二十年中,导致了计算社会选择的发展-一个跨学科的研究和实践领域,结合了数学,逻辑,经济学和计算机科学的见解。计算社会选择的主要焦点之一是在民意调查或选举中确定实际或潜在获胜者的算法方面。此外,处理不完备性和不确定性(轮询的固有特征)是计算社会选择面临的一个重要挑战。近年来,数据管理社区开始对偏好数据库进行调查,这些数据库通过将偏好与关系数据同等对待来扩展传统数据库。该项目将提出一个基础和系统研究议程,将在计算社会选择和数据管理社区之间建立桥梁。该项目的主要目标是开发一个统一的框架,将首选项、规则、结果、上下文信息和数据库查询语言结合在一起。该项目将丰富目前由计算社会选择方法支持的数据分析任务的种类,使其包括上下文,超越确定获胜者,并对备选方案所代表的立场和问题进行推理,以及有关这些选择的信息。为此,该项目将开发一种查询语言,该语言将使用用于投票规则和获胜者的特殊运算符来增强传统数据库查询语言,从而使在有关选民、候选人和问题的附加信息的背景下研究社会选择问题成为可能。此外,这种语言将支持关系上下文中关于不完整或不确定的首选项、规则和赢家的复杂查询。将提供这种语言查询的严格语义,并研究基本的算法问题,例如查询评估和关于约束的推理。本项目中开发的技术将在使用真实数据集的查询引擎原型中进行实验评估。通过建立计算社会选择和数据管理之间的技术联系,并通过开发一个统一的框架,计算社会选择社区将有机会使用数据库社区开发的大量方法来管理不完整和不确定的信息。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Julia Stoyanovich其他文献
Rankers, Rankees, & Rankings: Peeking into the Pandora's Box from a Socio-Technical Perspective
排名者、排名者、
- DOI:
10.48550/arxiv.2211.02932 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Jun Yuan;Julia Stoyanovich;Aritra Dasgupta - 通讯作者:
Aritra Dasgupta
Responsible AI literacy: A stakeholder-first approach
负责任的人工智能素养:利益相关者优先的方法
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Daniel Domínguez Figaredo;Julia Stoyanovich - 通讯作者:
Julia Stoyanovich
AI reflections in 2020
2020年人工智能反思
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:23.8
- 作者:
Anna Jobin;K. Man;A. Damasio;Georgios Kaissis;R. Braren;Julia Stoyanovich;J. V. Bavel;Tessa V. West;B. Mittelstadt;J. Eshraghian;M. Costa;A. Tzachor;A. Jamjoom;M. Taddeo;E. Sinibaldi;Yipeng Hu;M. Luengo - 通讯作者:
M. Luengo
Fairness as Equality of Opportunity: Normative Guidance from Political Philosophy
作为机会均等的公平:政治哲学的规范指导
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Falaah Arif Khan;Eleni Manis;Julia Stoyanovich - 通讯作者:
Julia Stoyanovich
Enabling Privacy in Provenance-Aware Workflow Systems
在来源感知工作流程系统中启用隐私
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
S. Davidson;S. Khanna;V. Tannen;Sudeepa Roy;Yi Chen;Tova Milo;Julia Stoyanovich - 通讯作者:
Julia Stoyanovich
Julia Stoyanovich的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Julia Stoyanovich', 18)}}的其他基金
Collaborative Research: FW-HTF-RL: Trapeze: Responsible AI-assisted Talent Acquisition for HR Specialists
合作研究:FW-HTF-RL:Trapeze:负责任的人工智能辅助人力资源专家人才获取
- 批准号:
2326193 - 财政年份:2023
- 资助金额:
$ 23.36万 - 项目类别:
Standard Grant
Collaborative Research: III: MEDIUM: Responsible Design and Validation of Algorithmic Rankers
合作研究:III:媒介:算法排序器的负责任设计和验证
- 批准号:
2312930 - 财政年份:2023
- 资助金额:
$ 23.36万 - 项目类别:
Standard Grant
Collaborative Research: Framework for Integrative Data Equity Systems
协作研究:综合数据公平系统框架
- 批准号:
1934464 - 财政年份:2019
- 资助金额:
$ 23.36万 - 项目类别:
Continuing Grant
BIGDATA: F: Collaborative Research: Foundations of Responsible Data Management
大数据:F:协作研究:负责任的数据管理的基础
- 批准号:
1926250 - 财政年份:2019
- 资助金额:
$ 23.36万 - 项目类别:
Standard Grant
NSF-BSF: III: Small: Collaborative Research: Databases Meet Computational Social Choice
NSF-BSF:III:小型:协作研究:数据库满足计算社会选择
- 批准号:
1916647 - 财政年份:2018
- 资助金额:
$ 23.36万 - 项目类别:
Standard Grant
BIGDATA: F: Collaborative Research: Foundations of Responsible Data Management
大数据:F:协作研究:负责任的数据管理的基础
- 批准号:
1741047 - 财政年份:2017
- 资助金额:
$ 23.36万 - 项目类别:
Standard Grant
CRII: III: Managing Preference Data
CRII:III:管理偏好数据
- 批准号:
1464327 - 财政年份:2015
- 资助金额:
$ 23.36万 - 项目类别:
Standard Grant
BSF: 2014391: Aggregation Methods for Partial Preferences Overview.
BSF:2014391:部分偏好的聚合方法概述。
- 批准号:
1539856 - 财政年份:2015
- 资助金额:
$ 23.36万 - 项目类别:
Standard Grant
相似国自然基金
枯草芽孢杆菌BSF01降解高效氯氰菊酯的种内群体感应机制研究
- 批准号:31871988
- 批准年份:2018
- 资助金额:59.0 万元
- 项目类别:面上项目
基于掺硼直拉单晶硅片的Al-BSF和PERC太阳电池光衰及其抑制的基础研究
- 批准号:61774171
- 批准年份:2017
- 资助金额:63.0 万元
- 项目类别:面上项目
B细胞刺激因子-2(BSF-2)与自身免疫病的关系
- 批准号:38870708
- 批准年份:1988
- 资助金额:3.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
- 批准号:
2321481 - 财政年份:2024
- 资助金额:
$ 23.36万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
- 批准号:
2321480 - 财政年份:2024
- 资助金额:
$ 23.36万 - 项目类别:
Continuing Grant
NSF-BSF: Many-Body Physics of Quantum Computation
NSF-BSF:量子计算的多体物理学
- 批准号:
2338819 - 财政年份:2024
- 资助金额:
$ 23.36万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: Under Pressure: The evolution of guard cell turgor and the rise of the angiosperms
合作研究:NSF-BSF:压力之下:保卫细胞膨压的进化和被子植物的兴起
- 批准号:
2333889 - 财政年份:2024
- 资助金额:
$ 23.36万 - 项目类别:
Standard Grant
Collaborative Research: NSF-BSF: Under Pressure: The evolution of guard cell turgor and the rise of the angiosperms
合作研究:NSF-BSF:压力之下:保卫细胞膨压的进化和被子植物的兴起
- 批准号:
2333888 - 财政年份:2024
- 资助金额:
$ 23.36万 - 项目类别:
Continuing Grant
NSF-BSF: Towards a Molecular Understanding of Dynamic Active Sites in Advanced Alkaline Water Oxidation Catalysts
NSF-BSF:高级碱性水氧化催化剂动态活性位点的分子理解
- 批准号:
2400195 - 财政年份:2024
- 资助金额:
$ 23.36万 - 项目类别:
Standard Grant
NSF-BSF: Collaborative Research: Solids and reactive transport processes in sewer systems of the future: modeling and experimental investigation
NSF-BSF:合作研究:未来下水道系统中的固体和反应性输送过程:建模和实验研究
- 批准号:
2134594 - 财政年份:2024
- 资助金额:
$ 23.36万 - 项目类别:
Standard Grant
NSF-BSF Combinatorial Set Theory and PCF
NSF-BSF 组合集合论和 PCF
- 批准号:
2400200 - 财政年份:2024
- 资助金额:
$ 23.36万 - 项目类别:
Standard Grant
NSF-BSF: CDS&E: Tensor Train methods for Quantum Impurity Solvers
NSF-BSF:CDS
- 批准号:
2401159 - 财政年份:2024
- 资助金额:
$ 23.36万 - 项目类别:
Continuing Grant
NSF-BSF: Collaborative Research: AF: Small: Algorithmic Performance through History Independence
NSF-BSF:协作研究:AF:小型:通过历史独立性实现算法性能
- 批准号:
2420942 - 财政年份:2024
- 资助金额:
$ 23.36万 - 项目类别:
Standard Grant