Explicit Methods for Linear and Non-Linear Tomography
线性和非线性层析成像的显式方法
基本信息
- 批准号:1814104
- 负责人:
- 金额:$ 16.37万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Several inverse problems with applications to medical imaging, geophysical imaging and non-destructive material testing are modeled as integral geometric problems, which consist of reconstructing internal features of materials from their cumulated integrals along a given family of trajectories. Examples include the X-ray/Radon transform used in Computerized Tomography, the travel-time tomography problem in seismology or geophysical prospection, and the Neutron Spin Tomography problem, where a magnetic field inside a material must be recovered from its "non-abelian" integrals. In this project, the investigator and his collaborators focus on integral geometric problems where the complexity lies in the type of object to be reconstructed, in the fact that the geometry of propagation of information is curved, and in the nonlinear character of some of these problems. For each of the problems considered, the task is to put in mathematical terms the answer to the following questions: (i) Is the unknown reconstructible from the given measurements and, if yes, how stable is the inversion? (ii) How to reconstruct the unknown in practice? (iii) How to deal with imperfections in the model and in the measurements (due to instrumental noise for example) and how to quantify the uncertainty induced on the proposed reconstructions?This project focuses on some linear and nonlinear integral geometric problems where unknowns are modeled as functions, tensors, connections over bundles or sections of these bundles, and the measurements are integral functionals of the unknowns. For various "solvable" settings, explicit reconstruction algorithms will be derived and implemented whenever possible, assessing injectivity, stability, implementation, and uncertainty quantification aspects of the inverse problems at play. The proposed methods combine deep theoretical tools (microlocal analysis, harmonic analysis, Clifford analysis and partial differential equations on manifolds) with a concern for implementability, to produce explicit answers, some of which already exist in non-explicit form. Numerical validations will be provided to confirm the implementability of the derivation and uncover the next challenges toward real-life applications.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
应用于医学成像、地球物理成像和无损材料检测的几个反问题被建模为积分几何问题,其中包括从材料的累积积分沿沿着给定的轨迹族重建材料的内部特征。例子包括X射线/Radon变换用于计算机断层扫描,地震学或地球物理勘探中的走时断层扫描问题,以及中子自旋断层扫描问题,其中材料内部的磁场必须从其“非阿贝尔”积分中恢复。在这个项目中,研究者和他的合作者专注于积分几何问题,其中复杂性在于要重建的对象的类型,事实上,信息传播的几何形状是弯曲的,以及其中一些问题的非线性特征。对于每一个问题的考虑,任务是把在数学术语的答案,以下列问题:(一)是未知的重建从给定的测量,如果是,如何稳定的反演?(ii)如何在实践中重构未知?(iii)如何处理模型和测量中的缺陷(例如由于仪器噪声)以及如何量化拟议重建中引起的不确定性?这个项目的重点是一些线性和非线性的积分几何问题,其中未知数被建模为函数,张量,连接在丛或这些丛的部分,和测量是未知数的积分泛函。对于各种“可解”的设置,显式重建算法将推导和实施,尽可能,评估注入性,稳定性,实施和不确定性量化方面的反问题在发挥作用。所提出的方法结合了联合收割机深的理论工具(微局部分析,调和分析,Clifford分析和偏微分方程的流形上)与关注的可实施性,以产生明确的答案,其中一些已经存在于非明确的形式。将提供数值验证,以确认推导的可实施性,并揭示对现实生活中的应用的下一个挑战。这个奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Functional Relations, Sharp Mapping Properties, and Regularization of the X-Ray Transform on Disks of Constant Curvature
常曲率圆盘上 X 射线变换的函数关系、锐映射特性和正则化
- DOI:10.1137/20m1311508
- 发表时间:2020
- 期刊:
- 影响因子:2
- 作者:Monard, François
- 通讯作者:Monard, François
Injectivity of the Heisenberg X-ray transform
- DOI:10.1016/j.jfa.2020.108886
- 发表时间:2020-04
- 期刊:
- 影响因子:1.7
- 作者:Steven Flynn
- 通讯作者:Steven Flynn
Range characterizations and Singular Value Decomposition of the geodesic X-ray transform on disks of constant curvature
常曲率圆盘上测地X射线变换的范围表征和奇异值分解
- DOI:10.4171/jst/364
- 发表时间:2021
- 期刊:
- 影响因子:1
- 作者:Mishra, Rohit Kumar;Monard, François
- 通讯作者:Monard, François
Statistical guarantees for Bayesian uncertainty quantification in nonlinear inverse problems with Gaussian process priors
- DOI:10.1214/21-aos2082
- 发表时间:2020-07
- 期刊:
- 影响因子:0
- 作者:F. Monard;Richard Nickl;G. Paternain
- 通讯作者:F. Monard;Richard Nickl;G. Paternain
Consistent Inversion of Noisy Non‐Abelian X‐Ray Transforms
噪声非阿贝尔 X 射线变换的一致反演
- DOI:10.1002/cpa.21942
- 发表时间:2021
- 期刊:
- 影响因子:3
- 作者:Monard, François;Nickl, Richard;Paternain, Gabriel P.
- 通讯作者:Paternain, Gabriel P.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Francois Monard其他文献
Francois Monard的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Francois Monard', 18)}}的其他基金
CAREER: Integral Geometry: Theory, Implementations, and Applications
职业:积分几何:理论、实现和应用
- 批准号:
1943580 - 财政年份:2020
- 资助金额:
$ 16.37万 - 项目类别:
Continuing Grant
Coupled-physics imaging methods and geodesic X-ray transforms
耦合物理成像方法和测地 X 射线变换
- 批准号:
1712790 - 财政年份:2016
- 资助金额:
$ 16.37万 - 项目类别:
Continuing Grant
Coupled-physics imaging methods and geodesic X-ray transforms
耦合物理成像方法和测地 X 射线变换
- 批准号:
1514820 - 财政年份:2015
- 资助金额:
$ 16.37万 - 项目类别:
Continuing Grant
Coupled-physics imaging methods and geodesic X-ray transforms
耦合物理成像方法和测地 X 射线变换
- 批准号:
1634544 - 财政年份:2015
- 资助金额:
$ 16.37万 - 项目类别:
Continuing Grant
相似国自然基金
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Effective Hamiltonian Downfolding Methods for Studying Linear and Nonlinear Responses of Quantum Materials
职业:研究量子材料线性和非线性响应的有效哈密顿向下折叠方法
- 批准号:
2338704 - 财政年份:2024
- 资助金额:
$ 16.37万 - 项目类别:
Continuing Grant
RII Track-4:NSF: Construction of New Additive and Semi-Implicit General Linear Methods
RII Track-4:NSF:新的加法和半隐式一般线性方法的构造
- 批准号:
2327484 - 财政年份:2024
- 资助金额:
$ 16.37万 - 项目类别:
Standard Grant
SHF: Small: Efficient, Deterministic and Formally Certified Methods for Solving Low-dimensional Linear Programs with Floating-point Precision
SHF:小型:用于以浮点精度求解低维线性程序的高效、确定性且经过正式认证的方法
- 批准号:
2312220 - 财政年份:2023
- 资助金额:
$ 16.37万 - 项目类别:
Standard Grant
Business Cycle Accounting with Non-linear Solution Methods
非线性求解方法的经济周期会计
- 批准号:
22K01394 - 财政年份:2022
- 资助金额:
$ 16.37万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Exploring unsupervised domain adaptation methods for automated linear disturbance mapping
探索自动线性扰动映射的无监督域适应方法
- 批准号:
577643-2022 - 财政年份:2022
- 资助金额:
$ 16.37万 - 项目类别:
Alliance Grants
Pretest and shrinkage estimation methods for joint modeling of linear mixed models and the AFT model
线性混合模型和AFT模型联合建模的预测试和收缩估计方法
- 批准号:
573853-2022 - 财政年份:2022
- 资助金额:
$ 16.37万 - 项目类别:
University Undergraduate Student Research Awards
New Coupled-cluster Methods for Linear and Non-linear Valence and Core-level Spectroscopy in Gas and Condensed Phase
气相和凝聚相中线性和非线性价态和核心级光谱学的新耦合簇方法
- 批准号:
2154482 - 财政年份:2022
- 资助金额:
$ 16.37万 - 项目类别:
Standard Grant
Advanced Optimal Control Methods for Non-Linear and Distributed-Parameter Processes
非线性和分布式参数过程的先进优化控制方法
- 批准号:
RGPIN-2020-04352 - 财政年份:2021
- 资助金额:
$ 16.37万 - 项目类别:
Discovery Grants Program - Individual
LEAPS-MPS: Hybridizable discontinuous Galerkin methods for non-linear integro-differential boundary value problems in magnetic plasma confinement
LEAPS-MPS:磁等离子体约束中非线性积分微分边值问题的混合不连续伽辽金方法
- 批准号:
2137305 - 财政年份:2021
- 资助金额:
$ 16.37万 - 项目类别:
Standard Grant
Optimization of General Linear Time-Marching Methods
一般线性时间推进方法的优化
- 批准号:
561878-2021 - 财政年份:2021
- 资助金额:
$ 16.37万 - 项目类别:
University Undergraduate Student Research Awards