Advanced Optimal Control Methods for Non-Linear and Distributed-Parameter Processes
非线性和分布式参数过程的先进优化控制方法
基本信息
- 批准号:RGPIN-2020-04352
- 负责人:
- 金额:$ 2.04万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2021
- 资助国家:加拿大
- 起止时间:2021-01-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
To achieve top efficiencies amid increasing competition, reduced profit margins, increasing product quality expectations from consumers, and rising concerns to protect energy and the environment, modern industry demands an increasingly higher performance from control methods. This is a major challenge when dealing with chemical processes, which are ubiquitously non-linear and non-uniform, and are described by sophisticated mathematical models. Although the progress in control research, high-speed computing and computer hardware has helped in better control of industrial processes, there is considerable scope to develop control methods that are computationally more efficient, respond with significantly less time delay, and thus offer more effective real-time control of complex processes, which are highly relevant to industry. The proposed research program incorporates two major initiatives in the development of advanced optimal control methods. The first initiative involves the development and testing of high-performance optimal feedback control methods with greatly reduced computational delays for real-time control of nonlinear, distributed-parameter processes. This initiative incorporates developing fast-acting model predictive control strategies based on series transformation and homotopy continuation. The design of periodic optimal control strategies is also included to enhance the performance of continuous process operations. The second initiative exploits Artificial Intelligence including artificial neural networks, reinforced learning, and evolutionary computation to develop extremely efficient and resilient real-time control methods in conjunction with the proposed control strategies. By working on the above initiatives, the proposed research program will contribute to the development of advanced control methods for complex, non-linear, and non-uniform processes, which abound in industry. These methods will enable improved utilization of energy and resources, lower environmental impacts, and support production of consistently better quality products. Last but not least, the research program will provide valuable opportunities for the training of two PhD and two Master's students in the field of advanced optimal control and Artificial Intelligence. These students will develop knowledge and skills in high demand by industry.
为了在竞争日益激烈、利润率下降、消费者对产品质量的期望不断提高以及对能源和环境保护的日益关注的情况下实现最高效率,现代工业对控制方法的性能要求越来越高。在处理化学过程时,这是一个重大挑战,这些过程普遍是非线性和非均匀的,并且由复杂的数学模型描述。尽管控制研究、高速计算和计算机硬件的进步有助于更好地控制工业过程,但仍有相当大的空间来开发计算效率更高、响应时间延迟显著更少的控制方法,从而为与工业高度相关的复杂过程提供更有效的实时控制。拟议的研究计划包括两个主要举措,在先进的最优控制方法的发展。第一项倡议涉及开发和测试高性能的最佳反馈控制方法,大大减少计算延迟,用于实时控制非线性分布参数过程。该计划包括开发基于级数变换和同伦连续的快速作用模型预测控制策略。周期性的最优控制策略的设计也包括以提高连续过程操作的性能。第二项计划利用人工智能,包括人工神经网络,强化学习和进化计算,结合所提出的控制策略,开发非常有效和有弹性的实时控制方法。通过上述举措的工作,拟议的研究计划将有助于开发先进的控制方法的复杂,非线性和非均匀的过程,这在工业中比比皆是。这些方法将能够提高能源和资源的利用率,降低环境影响,并支持生产质量更高的产品。最后但并非最不重要的是,该研究计划将为高级最优控制和人工智能领域的两名博士生和两名硕士生的培训提供宝贵的机会。这些学生将培养行业高需求的知识和技能。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Upreti, Simant其他文献
Upreti, Simant的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Upreti, Simant', 18)}}的其他基金
Advanced Optimal Control Methods for Non-Linear and Distributed-Parameter Processes
非线性和分布式参数过程的先进优化控制方法
- 批准号:
RGPIN-2020-04352 - 财政年份:2020
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Fundamental characterization and enhancement of chemical engineering processes using advanced optimal control techniques
使用先进的优化控制技术对化学工程过程进行基本表征和增强
- 批准号:
RGPIN-2014-06354 - 财政年份:2014
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Determination of mass transport properties in heavy oils and polymers, and development of robust and efficient optimization algorithms for chemical engineering applications
测定重油和聚合物中的传质特性,并为化学工程应用开发稳健且高效的优化算法
- 批准号:
250295-2008 - 财政年份:2012
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Determination of mass transport properties in heavy oils and polymers, and development of robust and efficient optimization algorithms for chemical engineering applications
测定重油和聚合物中的传质特性,并为化学工程应用开发稳健且高效的优化算法
- 批准号:
250295-2008 - 财政年份:2011
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Determination of mass transport properties in heavy oils and polymers, and development of robust and efficient optimization algorithms for chemical engineering applications
测定重油和聚合物中的传质特性,并为化学工程应用开发稳健且高效的优化算法
- 批准号:
250295-2008 - 财政年份:2010
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Determination of mass transport properties in heavy oils and polymers, and development of robust and efficient optimization algorithms for chemical engineering applications
测定重油和聚合物中的传质特性,并为化学工程应用开发稳健且高效的优化算法
- 批准号:
250295-2008 - 财政年份:2009
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Determination of mass transport properties in heavy oils and polymers, and development of robust and efficient optimization algorithms for chemical engineering applications
测定重油和聚合物中的传质特性,并为化学工程应用开发稳健且高效的优化算法
- 批准号:
250295-2008 - 财政年份:2008
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Development of thermodynamic and mass transfer models and optimal control techniques
热力学和传质模型以及最优控制技术的开发
- 批准号:
250295-2003 - 财政年份:2007
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
An online GCS to measure hydrocarbon concentrations in vapor extraction of oil sands, supercritical devolatization of polymers, and catalytic ozonation of industrial wastewaters
在线GCS,用于测量油砂蒸气萃取、聚合物超临界脱挥发分和工业废水催化臭氧化中的碳氢化合物浓度
- 批准号:
344870-2007 - 财政年份:2006
- 资助金额:
$ 2.04万 - 项目类别:
Research Tools and Instruments - Category 1 (<$150,000)
Development of thermodynamic and mass transfer models and optimal control techniques
热力学和传质模型以及最优控制技术的开发
- 批准号:
250295-2003 - 财政年份:2006
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
BRITE Pivot: Learning-based Optimal Control of Streamflow with Potentially Infeasible Time-bound Constraints for Flood Mitigation
BRITE Pivot:基于学习的水流优化控制,具有可能不可行的防洪时限约束
- 批准号:
2226936 - 财政年份:2023
- 资助金额:
$ 2.04万 - 项目类别:
Standard Grant
Cooperative multi agent optimal adaptive control of large degree of freedom manipulators for an interdependent collaborative task
用于相互依赖的协作任务的大自由度机械臂的协作多智能体最优自适应控制
- 批准号:
2890822 - 财政年份:2023
- 资助金额:
$ 2.04万 - 项目类别:
Studentship
Optimal Transport Protocols for Biomolecular Machinery - Approaching the Principle Limits of Control of Microscopic Systems
生物分子机械的最佳传输协议 - 接近微观系统控制的原理极限
- 批准号:
23H01136 - 财政年份:2023
- 资助金额:
$ 2.04万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
On the reliability of computational algorithms in optimal control methods using highly expressive non-differentiable functions
使用高表达不可微函数的最优控制方法中计算算法的可靠性
- 批准号:
23K13359 - 财政年份:2023
- 资助金额:
$ 2.04万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Mathematical modeling for optimal control of BK virus infection in kidney transplant recipients
肾移植受者 BK 病毒感染最佳控制的数学模型
- 批准号:
10741703 - 财政年份:2023
- 资助金额:
$ 2.04万 - 项目类别:
Development of cluster-based reduced-order model for optimal feedback control of dynamic stall flow
开发基于集群的动态失速流最优反馈控制降阶模型
- 批准号:
22KJ0183 - 财政年份:2023
- 资助金额:
$ 2.04万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Optimal control approach to machine learning with physical explainability
具有物理可解释性的机器学习最优控制方法
- 批准号:
23H01436 - 财政年份:2023
- 资助金额:
$ 2.04万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
FET: Small: An Integrated Framework for the Optimal Control of Open Quantum Systems --- Theory, Quantum Algorithms, and Applications
FET:小型:开放量子系统最优控制的集成框架 --- 理论、量子算法和应用
- 批准号:
2312456 - 财政年份:2023
- 资助金额:
$ 2.04万 - 项目类别:
Standard Grant
SCH: Spine-Hip Exoskeletons with Learning-Based Optimal Control for Low Back Pain Alleviation
SCH:具有基于学习的最佳控制的脊柱-髋部外骨骼,可缓解腰痛
- 批准号:
10816884 - 财政年份:2023
- 资助金额:
$ 2.04万 - 项目类别:
RI: Small: Collaborative Research: Evolutionary Approach to Optimal Morphology and Control of Transformable Soft Robots
RI:小型:协作研究:可变形软机器人的最佳形态和控制的进化方法
- 批准号:
2325491 - 财政年份:2023
- 资助金额:
$ 2.04万 - 项目类别:
Standard Grant