The Kompaneets Equation, Anomalous Diffusion, and Brownian Entanglement

Kompaneets 方程、反常扩散和布朗纠缠

基本信息

  • 批准号:
    1814147
  • 负责人:
  • 金额:
    $ 34.67万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-09-01 至 2022-08-31
  • 项目状态:
    已结题

项目摘要

This research project is devoted to mathematical study of questions arising in the investigation of three natural phenomena; these studies are united by the use of related mathematical tools. The first set of questions concerns mathematically understanding behavior of photons in low-density plasmas. The second set of questions concerns the behavior of particles in fluid flow. In certain situations important for applications, particles diffuse in unusual ways. This project investigates such "anomalous" diffusive behavior on intermediate (as opposed to long) time scales. The third set of questions is motivated by mathematically quantifying the entanglement of long polymer molecules; it aims to quantify the winding of trajectories of the related random walks. Each of these research projects involves graduate students and postdoctoral associates, who will be broadly trained through the course of their work. This research will use tools from applied analysis, partial differential equations, and probability. The first set of questions concerns the long-time behavior of the Kompaneets equation, and focuses on understanding the formation of a Bose-Einstein condensate. The second set of questions studies the small-noise limit of passive scalar transport and other related models arising in the context of fluids. While the long-time behavior of these equations is well known, here interest is in the small-noise intermediate-time regime where an anomalous diffusive effect is observed, and the limiting behavior is described by a time changed Brownian motion and time-fractional equations. The third set of questions studies the long-time "winding" or "entanglement" of Brownian trajectories on compact Riemannian manifolds with boundary. This is closely related to heat kernel estimates on covering spaces, and is motivated by the study of the entanglement of long polymer molecules.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该研究项目致力于对三种自然现象的调查中出现的问题进行数学研究;这些研究通过使用相关的数学工具而结合起来。第一组问题涉及从数学上理解光子在低密度等离子体中的行为。第二组问题涉及流体流动中粒子的行为。在某些重要的应用场合,粒子以不同寻常的方式扩散。这个项目在中间(相对于长)时间尺度上研究这种“异常”扩散行为。第三组问题的动机是用数学方法量化长聚合物分子的纠缠;它旨在量化相关随机游走轨迹的缠绕。每一个研究项目都涉及研究生和博士后,他们将在工作过程中得到广泛的培训。本研究将使用应用分析、偏微分方程和概率论的工具。第一组问题涉及Kompaneets方程的长期行为,并侧重于理解玻色-爱因斯坦凝聚体的形成。第二组问题研究了流体环境下被动标量输运的小噪声极限和其他相关模型。虽然这些方程的长期行为是众所周知的,但这里的兴趣是在小噪声的中间时间区域,在那里观察到异常扩散效应,并且极限行为是由时间变化的布朗运动和时间分数方程描述的。第三组问题研究具有边界的紧致黎曼流形上布朗轨迹的长时间“缠绕”或“纠缠”。这与覆盖空间的热核估计密切相关,并受到长聚合物分子缠结研究的推动。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Anomalous diffusion in comb-shaped domains and graphs
梳状域和图中的反常扩散
  • DOI:
    10.4310/cms.2020.v18.n7.a2
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    1
  • 作者:
    Cohn, Samuel;Iyer, Gautam;Nolen, James;Pego, Robert L.
  • 通讯作者:
    Pego, Robert L.
Bounds on the Heat Transfer Rate via Passive Advection
被动平流传热率的界限
Anomalous Dissipation in Passive Scalar Transport
  • DOI:
    10.1007/s00205-021-01736-2
  • 发表时间:
    2022-01-16
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Drivas, Theodore D.;Elgindi, Tarek M.;Jeong, In-Jee
  • 通讯作者:
    Jeong, In-Jee
Growth of Sobolev norms and loss of regularity in transport equations
Long Time Asymptotics of Heat Kernels and BrownianWinding Numbers on Manifolds with Boundary
有边界流形上的热核和布朗缠绕数的长时间渐近
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gautam Iyer其他文献

A stochastic Lagrangian proof of global existence of the Navier–Stokes equations for flows with small Reynolds number
A Harris theorem for enhanced dissipation, and an example of Pierrehumbert
增强耗散的 Harris 定理和 Pierrehumbert 的例子
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    William Cooperman;Gautam Iyer;Seungjae Son
  • 通讯作者:
    Seungjae Son
Bose-Einstein Condensation in a Hyperbolic Model for the Kompaneets Equation
Kompaneets 方程双曲模型中的玻色-爱因斯坦凝聚
A stochastic-Lagrangian particle system for the Navier–Stokes equations
纳维-斯托克斯方程的随机拉格朗日粒子系统
  • DOI:
    10.1088/0951-7715/21/11/004
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Gautam Iyer;J. Mattingly
  • 通讯作者:
    J. Mattingly
Long time behaviour of a stochastic-Lagrangian particle system for the Navier-Stokes equations
纳维-斯托克斯方程的随机拉格朗日粒子系统的长时间行为
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Gautam Iyer;Jonathan C. Mattingly
  • 通讯作者:
    Jonathan C. Mattingly

Gautam Iyer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gautam Iyer', 18)}}的其他基金

Diffusion, Dissipation Enhancement, and Mixing
扩散、耗散增强和混合
  • 批准号:
    2108080
  • 财政年份:
    2021
  • 资助金额:
    $ 34.67万
  • 项目类别:
    Continuing Grant
CAREER: Anomalous Diffusion, Homogenization and Averaging
职业:异常扩散、均匀化和平均
  • 批准号:
    1252912
  • 财政年份:
    2013
  • 资助金额:
    $ 34.67万
  • 项目类别:
    Continuing Grant
A probabilistic approach to the Navier-Stokes equations
纳维-斯托克斯方程的概率方法
  • 批准号:
    1007914
  • 财政年份:
    2010
  • 资助金额:
    $ 34.67万
  • 项目类别:
    Standard Grant
A Stochastic Langrangian approach to non-linear transport equations
非线性输运方程的随机朗格朗日方法
  • 批准号:
    0966947
  • 财政年份:
    2009
  • 资助金额:
    $ 34.67万
  • 项目类别:
    Standard Grant
A Stochastic Langrangian approach to non-linear transport equations
非线性输运方程的随机朗格朗日方法
  • 批准号:
    0707920
  • 财政年份:
    2007
  • 资助金额:
    $ 34.67万
  • 项目类别:
    Standard Grant

相似海外基金

Partial differential equation: Schrodinger operator and long-time dynamics
偏微分方程:薛定谔算子和长期动力学
  • 批准号:
    FT230100588
  • 财政年份:
    2024
  • 资助金额:
    $ 34.67万
  • 项目类别:
    ARC Future Fellowships
Multi-Scale Magnonic Crystals and Fractional Schr?dinger Equation-Governed Dynamics
多尺度磁子晶体和分数阶薛定谔方程控制的动力学
  • 批准号:
    2420266
  • 财政年份:
    2024
  • 资助金额:
    $ 34.67万
  • 项目类别:
    Standard Grant
High Order Wave Equation Algorithms for the Frequency Domain
频域高阶波动方程算法
  • 批准号:
    2345225
  • 财政年份:
    2023
  • 资助金额:
    $ 34.67万
  • 项目类别:
    Standard Grant
Hadron-Hadron Interactions and Equation of State from High-Energy Nuclear Collisions
高能核碰撞的强子-强子相互作用和状态方程
  • 批准号:
    23H01173
  • 财政年份:
    2023
  • 资助金额:
    $ 34.67万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Loewner equation and Teichmueller space theory
Loewner 方程和 Teichmueller 空间理论
  • 批准号:
    23H01078
  • 财政年份:
    2023
  • 资助金额:
    $ 34.67万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
A new nuclear matter calculation method based on realistic nuclear forces and the effect of many-body terms on the equation of state
基于现实核力和多体项对状态方程影响的新核物质计算方法
  • 批准号:
    23K03397
  • 财政年份:
    2023
  • 资助金额:
    $ 34.67万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of an integral equation theory satisfying the variational principle and accurate for long-range potential systems
满足变分原理且对长程势系统准确的积分方程理论的发展
  • 批准号:
    23K04666
  • 财政年份:
    2023
  • 资助金额:
    $ 34.67万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of a dietary estimation equation MEMO, using microdata to estimate nutrient intake from sources other than meals
开发饮食估计方程 MEMO,使用微观数据来估计膳食以外来源的营养摄入量
  • 批准号:
    23K12696
  • 财政年份:
    2023
  • 资助金额:
    $ 34.67万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Creation of low-noise quantum 3D imaging technique based on transport of intensity equation
基于强度传输方程的低噪声量子3D成像技术的创建
  • 批准号:
    23K17749
  • 财政年份:
    2023
  • 资助金额:
    $ 34.67万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
IHBEM: Data-driven integration of behavior change interventions into epidemiological models using equation learning
IHBEM:使用方程学习将行为改变干预措施以数据驱动的方式整合到流行病学模型中
  • 批准号:
    2327836
  • 财政年份:
    2023
  • 资助金额:
    $ 34.67万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了