Dynamical and Statistical Methods Applied to Hamiltonian Systems
应用于哈密顿系统的动力学和统计方法
基本信息
- 批准号:1814543
- 负责人:
- 金额:$ 42.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-01 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project is devoted to research on dynamical systems that represent mathematical models of complex physical systems evolving over time. Dynamical systems of interest include mechanical systems (e.g., motion of satellites under the influence of gravity, solar pressure, electromagnetic forces, etc.), astrophysics system (e.g., expansion of the early universe, motion near a Black Hole, and evolution of exoplanetary systems), and high energy physics (e.g., particle accelerators, and plasma confinement devices). The goal of this research is to analyze and predict patterns of complex behavior emerging from the dynamics, and to obtain statistical information on the long-term evolution of the underlying systems. The obtained results are expected to contribute towards advancing scientific discovery and promoting innovative technologies, for example to design more efficient satellite orbits, to optimize performance of particle accelerators, and to understand more about the formation and evolution of the universe and of our solar system. Additionally, this project integrates research with education, and contributes towards preparing a diverse, highly qualified mathematics workforce.At the fundamental level, the mathematical models to be investigated by this project can be framed in the formalism of Hamiltonian dynamics. A quintessential question is to understand the long-term behavior of orbits in Hamiltonian systems. This question is investigated in the context of nearly-integrable Hamiltonian systems (the Arnold diffusion problem), in the context of the N-body problem, and in the context of randomly perturbed Hamiltonian systems. The main objective of the research is to obtain qualitative and quantitative information on typical orbits in such systems. The information of interest concerns the distance traveled, speed and stability of orbits, the measure/Hausdorff dimension of the set of initial conditions for orbits that visit a prescribed sequence of targets, and the statistical distribution of orbits evolving from an initial data set. For this purpose, the investigator and his colleagues develop innovative methodologies that combine geometric, topological, and statistical methods, which can be applied to concrete examples, and can be implemented in high-precision numerical computations and computer assisted proofs.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目致力于研究动态系统,该系统代表复杂物理系统随时间演变的数学模型。感兴趣的动力系统包括机械系统(例如,卫星在重力、太阳压力、电磁力等影响下的运动)、天体物理系统(例如,早期宇宙的膨胀、黑洞附近的运动和系外行星系统的演化)和高能物理(例如,粒子加速器和等离子体约束装置)。本研究的目的是分析和预测动态中出现的复杂行为模式,并获得底层系统长期演变的统计信息。预计获得的结果将有助于推进科学发现和促进创新技术,例如设计更有效的卫星轨道,优化粒子加速器的性能,以及更多地了解宇宙和太阳系的形成和演化。此外,该项目将研究与教育相结合,有助于培养多样化、高素质的数学人才。在基本层面上,这个项目要研究的数学模型可以在哈密顿动力学的形式主义框架。一个典型的问题是理解哈密顿系统中轨道的长期行为。本文在近可积哈密顿系统(阿诺德扩散问题)、n体问题和随机扰动哈密顿系统的背景下研究了这个问题。研究的主要目的是获得这类系统中典型轨道的定性和定量信息。感兴趣的信息涉及轨道的行进距离、速度和稳定性,访问指定目标序列的轨道的初始条件集的测量/豪斯多夫维数,以及从初始数据集演变的轨道的统计分布。为此,研究者和他的同事们开发了结合几何、拓扑和统计方法的创新方法,这些方法可以应用于具体的例子,并且可以在高精度数值计算和计算机辅助证明中实现。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Arnold Diffusion in a Model of Dissipative System
耗散系统模型中的阿诺德扩散
- DOI:10.1137/22m1525508
- 发表时间:2023
- 期刊:
- 影响因子:2.1
- 作者:Akingbade, Samuel W.;Gidea, Marian;M-Seara, Tere
- 通讯作者:M-Seara, Tere
Diffusing orbits along chains of cylinders
沿着圆柱链的扩散轨道
- DOI:10.3934/dcds.2022121
- 发表时间:2022
- 期刊:
- 影响因子:1.1
- 作者:Gidea, Marian;Marco, Jean-Pierre
- 通讯作者:Marco, Jean-Pierre
A general mechanism of instability in Hamiltonian systems: Skipping along a normally hyperbolic invariant manifold
- DOI:10.3934/dcds.2020166
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:M. Gidea;Rafael de la Llave;T. M. Seara
- 通讯作者:M. Gidea;Rafael de la Llave;T. M. Seara
Topological data analysis of financial time series: Landscapes of crashes
- DOI:10.1016/j.physa.2017.09.028
- 发表时间:2018-02-01
- 期刊:
- 影响因子:3.3
- 作者:Gidea, Marian;Katz, Yuri
- 通讯作者:Katz, Yuri
A family of periodic orbits in the three-dimensional lunar problem
- DOI:10.1007/s10569-019-9882-8
- 发表时间:2018-10
- 期刊:
- 影响因子:1.6
- 作者:E. Belbruno;U. Frauenfelder;Otto van Koert
- 通讯作者:E. Belbruno;U. Frauenfelder;Otto van Koert
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Pablo Roldan Gonzalez其他文献
Pablo Roldan Gonzalez的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
CAREER: Next-Generation Methods for Statistical Integration of High-Dimensional Disparate Data Sources
职业:高维不同数据源统计集成的下一代方法
- 批准号:
2422478 - 财政年份:2024
- 资助金额:
$ 42.5万 - 项目类别:
Continuing Grant
Practical guidance on accessible statistical methods for different estimands in randomised trials
随机试验中不同估计值的可用统计方法的实用指南
- 批准号:
MR/Z503770/1 - 财政年份:2024
- 资助金额:
$ 42.5万 - 项目类别:
Research Grant
Modern statistical methods for clustering community ecology data
群落生态数据聚类的现代统计方法
- 批准号:
DP240100143 - 财政年份:2024
- 资助金额:
$ 42.5万 - 项目类别:
Discovery Projects
CAREER: Statistical Inference in Observational Studies -- Theory, Methods, and Beyond
职业:观察研究中的统计推断——理论、方法及其他
- 批准号:
2338760 - 财政年份:2024
- 资助金额:
$ 42.5万 - 项目类别:
Continuing Grant
Developing statistical methods for structural change analysis using panel data
使用面板数据开发结构变化分析的统计方法
- 批准号:
24K16343 - 财政年份:2024
- 资助金额:
$ 42.5万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Deepening and Expanding Research for Efficient Methods of Function Estimation in High Dimensional Statistical Analysis
高维统计分析中高效函数估计方法的深化和拓展研究
- 批准号:
23H03353 - 财政年份:2023
- 资助金额:
$ 42.5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Statistical Physics Methods in Combinatorics, Algorithms, and Geometry
组合学、算法和几何中的统计物理方法
- 批准号:
MR/W007320/2 - 财政年份:2023
- 资助金额:
$ 42.5万 - 项目类别:
Fellowship
Statistical Models and Methods for Complex Data in Metric Spaces
度量空间中复杂数据的统计模型和方法
- 批准号:
2310450 - 财政年份:2023
- 资助金额:
$ 42.5万 - 项目类别:
Standard Grant
Collaborative Research: Enabling Hybrid Methods in the NIMBLE Hierarchical Statistical Modeling Platform
协作研究:在 NIMBLE 分层统计建模平台中启用混合方法
- 批准号:
2332442 - 财政年份:2023
- 资助金额:
$ 42.5万 - 项目类别:
Standard Grant
Statistical and Psychometric Methods for Measuring the Extent to Which Culturally Responsive Assessments Reduce Cultural Bias
用于衡量文化响应评估减少文化偏见程度的统计和心理测量方法
- 批准号:
2243041 - 财政年份:2023
- 资助金额:
$ 42.5万 - 项目类别:
Standard Grant