Zeros of Eigenfunctions of Metric Graphs and Their Applications to Spectral Gap Estimates and to Buckling of Structures

度量图本征函数的零点及其在谱间隙估计和结构屈曲中的应用

基本信息

  • 批准号:
    1815075
  • 负责人:
  • 金额:
    $ 21.6万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-08-01 至 2023-07-31
  • 项目状态:
    已结题

项目摘要

The nodal sets (or zeros) of vibrational modes of plates and membranes have been fascinating scientists for centuries -- early experimental observations were mentioned in the works of da Vinci, Galileo, and Hooke. Nodal sets can reveal important information about the structure of the underlying vibrating body. The mathematics of the nodal sets of eigenfunctions in dimension one (for a vibrating string) is well understood; however, in dimensions two and higher even some very simple questions remain unanswered. The subject of this research project is a network of one-dimensional strings, also known as a metric graph. The project aims to answer several interrelated questions concerning vibrational mode analysis on metric graphs. Some questions under study have many potential applications, from quantum physics (stability of soliton solutions on networks of optical waveguides and optical semiconducting devices) to civil engineering (buckling analysis of metal frames), while others are aimed at development of fundamental tools useful to the area. Metric graphs occupy a special niche in the wider field of spectral analysis on manifolds. On one hand, they are easy to visualize and to study numerically. On the other hand, they often display features found in more complicated systems, such as manifolds of constant negative curvature, and they also have a plethora of applications. Three sets of questions will be addressed in the project. The first set is the optimal placement of a rank one perturbation (such as a forced zero). It has several potential applications, both theoretical (understanding the nodal count) and practical (optimizing the spectral gap to tune stability of a network-like structure). The second set of questions addresses the type of information about the graph that can be gleaned from the nodal count. The third set of questions is more fundamental in nature as it creates tools for the other two sets: the principal investigator will classify perturbations on graphs by their rank and signature, study the singular limits of operators on graphs as some edges shrink to zero, and investigate a connection between the nodal count and the scattering phase on a graph. Mathematical techniques to be used include spectral analysis, microlocal analysis, graph theory, symplectic geometry, and combinatorics.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
几个世纪以来,板和膜的振动模式的节点集(或零点)一直吸引着科学家--早期的实验观察在达芬奇、伽利略和胡克的著作中被提及。节点集可以揭示关于下面振动体的结构的重要信息。一维(对于振动的弦)本征函数的节点集的数学已经很好地理解了;然而,在二维和更高维中,甚至一些非常简单的问题仍然没有答案。这个研究项目的主题是一维字符串网络,也称为度量图。该项目旨在回答有关度规图振动模式分析的几个相关问题。正在研究的一些问题有许多潜在的应用,从量子物理(光波导和光半导体器件网络上孤子解的稳定性)到土木工程(金属框架的屈曲分析),而其他问题则旨在开发对该领域有用的基本工具。度量图在流形上的谱分析这一更广泛的领域中占有特殊的一席之地。一方面,它们很容易形象化和数字化研究。另一方面,它们经常显示在更复杂的系统中发现的特征,例如常负曲率的流形,并且它们也有大量的应用。该项目将解决三组问题。第一个集合是秩1扰动(例如强制零点)的最优位置。它有几个潜在的应用,无论是理论(了解节点计数)和实际(优化光谱间隙,以调整网络状结构的稳定性)。第二组问题解决了可以从节点计数中收集的关于图的信息类型。第三组问题在本质上更基本,因为它为其他两组创建了工具:主要研究者将根据图的秩和签名对图上的扰动进行分类,研究图上算子的奇异极限,因为一些边收缩到零,并研究节点计数和图上的散射相位之间的联系。将使用的数学技术包括频谱分析,微局部分析,图论,辛几何和组合学。该奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Edge-localized states on quantum graphs in the limit of large mass
大质量极限下量子图的边缘局域态
  • DOI:
    10.1016/j.anihpc.2020.11.003
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Berkolaiko, Gregory;Marzuola, Jeremy L.;Pelinovsky, Dmitry E.
  • 通讯作者:
    Pelinovsky, Dmitry E.
Three‐dimensional elastic beam frames: Rigid joint conditions in variational and differential formulation
三维弹性梁框架:变分和微分公式中的刚性连接条件
  • DOI:
    10.1111/sapm.12485
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Berkolaiko, Gregory;Ettehad, Mahmood
  • 通讯作者:
    Ettehad, Mahmood
A local test for global extrema in the dispersion relation of a periodic graph
周期图色散关系中全局极值的局部检验
  • DOI:
    10.2140/paa.2022.4.257
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Berkolaiko, Gregory;Canzani, Yaiza;Cox, Graham;Marzuola, Jeremy Louis
  • 通讯作者:
    Marzuola, Jeremy Louis
Impediments to diffusion in quantum graphs: Geometry-based upper bounds on the spectral gap
量子图中扩散的障碍:基于几何的光谱间隙上限
Computing Nodal Deficiency with a Refined Dirichlet-to-Neumann Map
使用精炼狄利克雷到诺伊曼图计算节点缺陷
  • DOI:
    10.1007/s12220-022-00984-2
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Berkolaiko, G.;Cox, G.;Helffer, B.;Sundqvist, M. P.
  • 通讯作者:
    Sundqvist, M. P.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

GREGORY BERKOLAIKO其他文献

GREGORY BERKOLAIKO的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('GREGORY BERKOLAIKO', 18)}}的其他基金

A Variational Approach to Spectral Shift and Spectral Minimal Partitions
谱位移和谱最小划分的变分方法
  • 批准号:
    2247473
  • 财政年份:
    2023
  • 资助金额:
    $ 21.6万
  • 项目类别:
    Standard Grant
Conference on Inverse Problems and Spectral Theory, October 17-19, 2014
反问题和谱理论会议,2014 年 10 月 17-19 日
  • 批准号:
    1412493
  • 财政年份:
    2014
  • 资助金额:
    $ 21.6万
  • 项目类别:
    Standard Grant
Nodal count, magnetic potentials and Dirac cones: exploring the connections
节点数、磁势和狄拉克锥:探索联系
  • 批准号:
    1410657
  • 财政年份:
    2014
  • 资助金额:
    $ 21.6万
  • 项目类别:
    Standard Grant
Graphs in spectral analysis of complex systems
复杂系统谱分析中的图表
  • 批准号:
    0907968
  • 财政年份:
    2009
  • 资助金额:
    $ 21.6万
  • 项目类别:
    Standard Grant
Spectral Properties of Quantum Graphs and Related Systems
量子图及相关系统的谱特性
  • 批准号:
    0604859
  • 财政年份:
    2006
  • 资助金额:
    $ 21.6万
  • 项目类别:
    Standard Grant

相似海外基金

Spectral Asymptotics of Laplace Eigenfunctions
拉普拉斯本征函数的谱渐近
  • 批准号:
    2422900
  • 财政年份:
    2024
  • 资助金额:
    $ 21.6万
  • 项目类别:
    Standard Grant
Spectral Asymptotics of Laplace Eigenfunctions
拉普拉斯本征函数的谱渐近
  • 批准号:
    2204397
  • 财政年份:
    2022
  • 资助金额:
    $ 21.6万
  • 项目类别:
    Standard Grant
CAREER: Eigenfunctions, Weyl Laws, and Random Waves
职业:本征函数、韦尔定律和随机波
  • 批准号:
    2045494
  • 财政年份:
    2021
  • 资助金额:
    $ 21.6万
  • 项目类别:
    Continuing Grant
Estimates on eigenvalues and eigenfunctions in convex settings
凸设置中特征值和特征函数的估计
  • 批准号:
    1954304
  • 财政年份:
    2020
  • 资助金额:
    $ 21.6万
  • 项目类别:
    Continuing Grant
Laplace Eigenfunctions and Unique Continuation
拉普拉斯本征函数和唯一延拓
  • 批准号:
    1956294
  • 财政年份:
    2020
  • 资助金额:
    $ 21.6万
  • 项目类别:
    Standard Grant
Structure of eigenvalues and eigenfunctions
特征值和特征函数的结构
  • 批准号:
    2443915
  • 财政年份:
    2020
  • 资助金额:
    $ 21.6万
  • 项目类别:
    Studentship
Ergodicity and the Number of Nodal Domains of Eigenfunctions of the Laplacian
拉普拉斯本征函数的遍历性和节点域数
  • 批准号:
    2050123
  • 财政年份:
    2020
  • 资助金额:
    $ 21.6万
  • 项目类别:
    Standard Grant
Estimates on eigenvalues and eigenfunctions in convex settings
凸设置中特征值和特征函数的估计
  • 批准号:
    2042654
  • 财政年份:
    2020
  • 资助金额:
    $ 21.6万
  • 项目类别:
    Continuing Grant
Localization of eigenfunctions via an effective potential
通过有效势对本征函数进行本地化
  • 批准号:
    553002-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 21.6万
  • 项目类别:
    University Undergraduate Student Research Awards
Ergodicity and the Number of Nodal Domains of Eigenfunctions of the Laplacian
拉普拉斯本征函数的遍历性和节点域数
  • 批准号:
    1900993
  • 财政年份:
    2019
  • 资助金额:
    $ 21.6万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了